Home
Class 11
MATHS
Prove that (i) " cos " ((pi)/(4) + x...

Prove that
`(i) " cos " ((pi)/(4) + x) + " cos " ((pi)/(4)- x) =sqrt(2) " cos " x`
`(ii) " cos " ((3pi)/(4) + x) - "cos " ((3pi)/(4)-x) =- sqrt(2) " sin " x`

Text Solution

Verified by Experts

(i) LHS = cos `((pi)/(4) + x) + " cos " ((pi)/(4) -x)`
`=2 " cos " (pi)/(4) " cos " x [ :' " cos " (A+B) + " cos " (A-B) = 2 " cos " A " cos " B]`
`=(2 xx (1)/(sqrt(2)) " cos " x) = sqrt(2) " cos x " = RHS`
(ii) LHS `= " cos " ((3pi)/(4) + x) - " cos " ((3pi)/(4) -x)`
`=-2 " sin " .(3pi)/(4) " sin " x`
`[ :' " cos " (A+B) - " cos " (A-B) =- 2 " sin " A " sin "B]`
`=-2 "sin " (pi-(pi)/(4)) " sin " x`
`=-2 "sin " .(pi)/(2) " sin " x [ :' " sin " (pi-(pi)/(4)) = " sin " .(pi)/(4) ]`
`=(-2 xx (1)/(sqrt(2))) " sin x " =- sqrt(2) " sin " x = RHS`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15A)|10 Videos
  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15B)|20 Videos
  • THREE-DIMENSIONAL GEOMETRY

    RS AGGARWAL|Exercise EXERCISE 26 C|13 Videos
  • TRIGONOMETRIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE|21 Videos

Similar Questions

Explore conceptually related problems

Prove that (i) "cos " ((pi)/(3) +x) =(1)/(2) ( " cos " x - sqrt(3) sin x) (ii) " sin " ((pi)/(4) + x) + " sin " ((pi)/(4)-x) =sqrt(2) " cos " x (iii) (1)/(sqrt(2)) " cos ((pi)/(4) + x) = (1)/(2) " (cos x - sin x) " (iv) " cos x + cos " ((2pi)/(3) +x) + " cos " ((2pi)/(3)-x) =0

cos((3pi)/(4)+x)-cos((3pi)/(4)-x) = -sqrt(2)sinx

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=-sqrt(2)sin x

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=-sqrt(2)sin x

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=sqrt(2)sin x

Prove that quad cos((pi)/(4)+x)+cos((pi)/(4)-x)=sqrt(2)cos x

Prove that: cos((pi)/(4)+x)+cos((pi)/(4)-x)=sqrt(2)cos x

Prove that: cos((pi)/(4)+x)+cos((pi)/(4)-x)=sqrt(2)cos x

prove that sin((pi)/(4)+x)+sin((pi)/(4)-x)=sqrt(2)cos x

Prove that (i) "sin " (7pi)/(12) " cos " (pi)/(2) - "cos " *(7pi)/(12) " sin " (pi)/(4) = (sqrt(3))/(2) (ii) " sin " (pi)/(4) " cos " (pi)/(2) + "cos"(pi)/(4) " sin " (pi)/(12) = (sqrt(3))/(2) (iii) " cos " (2pi)/(3) " cos " (pi)/(4) - " sin " (2pi)/(3) " sin " (pi)/(4) =(-(sqrt(3) +1))/(2sqrt(2))