Home
Class 11
MATHS
(" sin 8x cos x- sin 6x cos 3x")/(" c...

`(" sin 8x cos x- sin 6x cos 3x")/(" cos 2x cos x - sin 4x sin 3x")= `

A

` " sin " 2x`

B

` " cos " 2x`

C

` " tan " 2x`

D

` " cosec " 2x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will simplify the expression step by step using trigonometric identities. **Given Expression:** \[ \frac{\sin 8x \cos x - \sin 6x \cos 3x}{\cos 2x \cos x - \sin 4x \sin 3x} \] ### Step 1: Simplify the Numerator We can use the identity for the difference of products of sine and cosine: \[ \sin A \cos B - \sin C \cos D = \sin A \cos B - \sin C \cos D \] We will multiply and divide the numerator by 2: \[ = \frac{2(\sin 8x \cos x - \sin 6x \cos 3x)}{2} \] Using the identity \(2 \sin A \cos B = \sin(A + B) + \sin(A - B)\): \[ = \frac{\sin(8x + x) - \sin(8x - x) - \sin(6x + 3x) + \sin(6x - 3x)}{2} \] This simplifies to: \[ = \frac{\sin 9x - \sin 7x - \sin 9x + \sin 3x}{2} \] Thus, the numerator simplifies to: \[ = \frac{\sin 7x - \sin 3x}{2} \] ### Step 2: Simplify the Denominator Now, we simplify the denominator: \[ \cos 2x \cos x - \sin 4x \sin 3x \] Again, we will multiply and divide the denominator by 2: \[ = \frac{2(\cos 2x \cos x - \sin 4x \sin 3x)}{2} \] Using the identity \(2 \cos A \cos B = \cos(A + B) + \cos(A - B)\): \[ = \frac{\cos(2x + x) + \cos(2x - x) - (\cos(4x + 3x) + \cos(4x - 3x))}{2} \] This simplifies to: \[ = \frac{\cos 3x + \cos x - \cos 7x - \cos x}{2} \] Thus, the denominator simplifies to: \[ = \frac{\cos 3x - \cos 7x}{2} \] ### Step 3: Combine the Results Now we can combine the simplified numerator and denominator: \[ = \frac{\frac{\sin 7x - \sin 3x}{2}}{\frac{\cos 3x - \cos 7x}{2}} = \frac{\sin 7x - \sin 3x}{\cos 3x - \cos 7x} \] ### Step 4: Use Sine and Cosine Difference Identities Using the identities for sine and cosine differences: \[ \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] \[ \cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] Applying these identities: \[ = \frac{2 \cos\left(\frac{7x + 3x}{2}\right) \sin\left(\frac{7x - 3x}{2}\right)}{-2 \sin\left(\frac{7x + 3x}{2}\right) \sin\left(\frac{7x - 3x}{2}\right)} \] This simplifies to: \[ = -\frac{\cos(5x)}{\sin(2x)} = -\cot(2x) \] ### Final Result Thus, the final expression simplifies to: \[ \tan(2x) \] ### Conclusion Hence, we have shown that: \[ \frac{\sin 8x \cos x - \sin 6x \cos 3x}{\cos 2x \cos x - \sin 4x \sin 3x} = \tan(2x) \]

To solve the given problem step by step, we will simplify the expression step by step using trigonometric identities. **Given Expression:** \[ \frac{\sin 8x \cos x - \sin 6x \cos 3x}{\cos 2x \cos x - \sin 4x \sin 3x} \] ### Step 1: Simplify the Numerator ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15A)|10 Videos
  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15B)|20 Videos
  • THREE-DIMENSIONAL GEOMETRY

    RS AGGARWAL|Exercise EXERCISE 26 C|13 Videos
  • TRIGONOMETRIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE|21 Videos

Similar Questions

Explore conceptually related problems

The function f(x) given by f(x)=(sin 8x cos x-sin6x cos 3x)/(cos x cos2x-sin3x sin 4x) , is

(cos 2x sin x + cos 6x sin 3x)/(sin 2x sin x + sin 6x sin 3x) =cot 5x

(sin 3x + sin x) sin x + (cos 3x - cos x) cos x =0

(sin x + sin 3x)/(cos x - cos 3x) = ?

(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x

cos x cos 2x cos 4x cos 8x =(sin 16x)/(16sin x)

8cos x cos2x cos4x = (sin6x) / (sin x)

Solve sin x-3 sin 2x + sin 3x = cos x -3 cos 2x + cos 3x .

Evaluate int sin x cos x cos2x cos 4x cos 8x dx

(2 cos x-3 sin x)/(6 cos x+4 sin x)