Home
Class 11
MATHS
Prove that (cos x + cos y)^(2) + (sin ...

Prove that `(cos x + cos y)^(2) + (sin x + sin y)^(2) = 4 cos^(2) ((x-y)/(2))`

Text Solution

Verified by Experts

We have
`LHS = (cos x + cos y)^(2) + (sin x + sin y)^(2)`
`={2 cos ((x+y)/(2)) cos ((x-y)/(2))^(2)} + {2sin ((x+y)/(2)) cos ((x-y)/(2))}^(2)`
` = 4 cos^(2) ((x+y)/(2)) cos^(2) ((x-y)/(2)) + 4 sin^(2) ((x+y)/(2)) cos^(2) ((x-y)/(2))`
`=4 cos^(2) ((x-y)/(2)).{cos^(2) ((x+y)/(2)) + sin^(2) ((x+y)/(2))}`
` =4 cos^(2) ((x-y)/(2)) = RHS`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15A)|10 Videos
  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15B)|20 Videos
  • THREE-DIMENSIONAL GEOMETRY

    RS AGGARWAL|Exercise EXERCISE 26 C|13 Videos
  • TRIGONOMETRIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE|21 Videos

Similar Questions

Explore conceptually related problems

Prove that: quad (cos x+cos y)^(2)+(sin x-sin y)^(2)=4cos^(2)(x+y)/(2)

Prove that: (cos x+cos y)^(2)+(sin x-sin y)^(2)=4cos^(2)backslash(x+y)/(2)

Prove that: quad (cos x-cos y)^(2)+(sin x-sin y)^(2)=4sin^(2)(x-y)/(2)

Prove that cos (x + y) = cos x cos y-sin x sin y

cos x + cos y + cos z = 0 and sin x + sin y + sin, then cos ^ (2) ((xy) / (2)) =

Prove that (i) cos (n + 2) x cos (n+1) x +sin (n+2) x sin (n+1) x = cos x) (ii) " cos " .((pi)/(4)-x) " cos " .((pi)/(4)-y) " - sin " ((pi)/(4)-x ) " sin " ((pi)/(4) -y) =" sin " (x+y)

lf_ (cos x + cos y-cos z = 0 = sin x + sin y + sin) then cos ((xy) / (2)) =

If (cos ^ (4) x) / (cos ^ (2) y) + (sin ^ (4) x) / (sin ^ (2) y) = 1 then prove that (cos ^ (4) y) / (cos ^ (2) x) + (sin ^ (4) y) / (sin ^ (2) x) = 1

(sin 2x - sin 2y)/(cos 2y-cos 2x) = cot (x+y)

prove that: cos ^ (2) x + cos ^ (2) y-2cos x * cos y * cos (x + y) = sin ^ (2) (x + y)