Home
Class 11
MATHS
Prove that (i) " sin " .(pi)/(6). " co...

Prove that `(i) " sin " .(pi)/(6). " cos " .(pi)/(6) = (sqrt(3))/(4) " " (iii) cos^(2) .(pi)/(2) - sin^(2) .(pi)/(2) =(sqrt(3))/(2)`

Text Solution

Verified by Experts

`(i) " sin " .(pi)/(6) " cos " .(pi)/(6) = (1)/(2) (2 sin .(pi)/(6) " cos " .(pi)/(6))`
`=(1)/(2) xx " sin " (2 xx (pi)/(6))`
`=(1)/(2) " sin " .(pi)/(3) = ((1)/(2) xx (sqrt(3))/(2))= (sqrt(3))/(4)`
`(ii) cos^(2) .(pi)/(12) - sin^(2).(pi)/(12) = cos (2xx (pi)/(12)) `
`=cos .(pi)/(6)= (3)/(2)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15A)|10 Videos
  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15B)|20 Videos
  • THREE-DIMENSIONAL GEOMETRY

    RS AGGARWAL|Exercise EXERCISE 26 C|13 Videos
  • TRIGONOMETRIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE|21 Videos

Similar Questions

Explore conceptually related problems

sin [(pi) / (6) + cos ^ (- 1) (- (sqrt (3)) / (2))] =

Prove that (i) "sin " (7pi)/(12) " cos " (pi)/(2) - "cos " *(7pi)/(12) " sin " (pi)/(4) = (sqrt(3))/(2) (ii) " sin " (pi)/(4) " cos " (pi)/(2) + "cos"(pi)/(4) " sin " (pi)/(12) = (sqrt(3))/(2) (iii) " cos " (2pi)/(3) " cos " (pi)/(4) - " sin " (2pi)/(3) " sin " (pi)/(4) =(-(sqrt(3) +1))/(2sqrt(2))

Prove that (i) " cos " ((pi)/(4) + x) + " cos " ((pi)/(4)- x) =sqrt(2) " cos " x (ii) " cos " ((3pi)/(4) + x) - "cos " ((3pi)/(4)-x) =- sqrt(2) " sin " x

Prove that :cos((pi)/(12))-sin((pi)/(12))=(1)/(sqrt(2))

Prove that (i) " 2sin " (5pi)/(12) " sin " (pi)/(12)=(1)/(2) (ii) " 2 cos " (5pi)/(12) " cos " .(pi)/(12)=(1)/(2) (iii) " 2 sin ".(5pi)/(12) " cos " (pi)/(2) = ((2+sqrt(3))/(2))

Prove that (i) " tan"^(2) .(pi)/(3) + 2cos^(2) .(pi)/(4)+ 3 sec^(2).(pi)/(6)+ 4 cos^(2).(pi)/(2)=8 (ii) " sin ".(pi)/(6) " cos 0 + sin ".(pi)/(4) " cos " .(pi)(4) + " sin " .(pi)/(3) "cos " .(pi)/(6) =(7)/(4) (iii) " 4sin " (pi)/(6) " sin"^(2) (pi)/(3) + 3 " cos " .(pi)/(3) " tan ".(pi)/(4) = " cosec"^(2).(pi)/(2)=4

(tan) (11 pi) / (3) (- 2sin) (4 pi) / (6) - (3) / (4) (cos ec ^ (2)) (pi) / (4) + (4cos ^ (2)) (17 pi) / (6) = (3-4sqrt (3)) / (2)

Prove that: i) sin(5pi)/(18) - cos(4pi)/(9) = sqrt(3)sinpi/9 ii) cos(3pi)/4+A-cos((3pi)/(4)-A)=-sqrt(2)sinA

tan ((11 pi) / (3)) - 2sin ((9 pi) / (3)) - (3) / (4) cos ec ^ (2) ((pi) / (4)) + 4cos ^ ( 2) ((17 pi) / (6)) = (3-2sqrt (3)) / (2)

Prove that 2sin((5 pi)/(12))cos((pi)/(12))=(2+sqrt(3))/(2)