Home
Class 11
MATHS
Show that sqrt(2+sqrt(2 +2 cos 4 theta)...

Show that `sqrt(2+sqrt(2 +2 cos 4 theta))= 2 cos theta`

Text Solution

AI Generated Solution

To prove that \(\sqrt{2 + \sqrt{2 + 2 \cos 4\theta}} = 2 \cos \theta\), we will start with the left-hand side (LHS) and simplify it step by step. ### Step 1: Write down the LHS \[ \text{LHS} = \sqrt{2 + \sqrt{2 + 2 \cos 4\theta}} \] ### Step 2: Simplify the inner square root ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15A)|10 Videos
  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15B)|20 Videos
  • THREE-DIMENSIONAL GEOMETRY

    RS AGGARWAL|Exercise EXERCISE 26 C|13 Videos
  • TRIGONOMETRIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE|21 Videos

Similar Questions

Explore conceptually related problems

Prove that: sqrt(2+sqrt(2+2cos4 theta))=2cos theta

If 0 lt theta lt pi/4 then show that sqrt(2+sqrt(2(1+cos 4theta)))=2 cos theta

sqrt(2+sqrt(2+2cos4 theta))

Show that sqrt(2+sqrt(2+sqrt(2+2cos 8theta)))=2cos theta

Show that: sqrt(2+sqrt(2+sqrt(2+2cos8 theta )))=2costheta,0

Show that sqrt[2+sqrt[2+sqrt[2+2cos8theta]]]=2costheta

theta<(pi)/(16),sqrt(2+sqrt(2+sqrt(2+2cos8 theta)))=k cos theta rArr k=

If pi<2 theta<(3 pi)/(2). then sqrt(2+sqrt(2+2cos4 theta)) is equal to