Home
Class 11
MATHS
Prove that (i) " 2sin " (5pi)/(12) "...

Prove that
`(i) " 2sin " (5pi)/(12) " sin " (pi)/(12)=(1)/(2)`
`(ii) " 2 cos " (5pi)/(12) " cos " .(pi)/(12)=(1)/(2)`
`(iii) " 2 sin ".(5pi)/(12) " cos " (pi)/(2) = ((2+sqrt(3))/(2))`

Answer

Step by step text solution for Prove that (i) " 2sin " (5pi)/(12) " sin " (pi)/(12)=(1)/(2) (ii) " 2 cos " (5pi)/(12) " cos " .(pi)/(12)=(1)/(2) (iii) " 2 sin ".(5pi)/(12) " cos " (pi)/(2) = ((2+sqrt(3))/(2)) by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15C)|27 Videos
  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15D)|21 Videos
  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15A)|10 Videos
  • THREE-DIMENSIONAL GEOMETRY

    RS AGGARWAL|Exercise EXERCISE 26 C|13 Videos
  • TRIGONOMETRIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (i) " sin " (pi)/(2) " "(ii) " sin " (5pi)/(12)

Prove that (i) "sin " (7pi)/(12) " cos " (pi)/(2) - "cos " *(7pi)/(12) " sin " (pi)/(4) = (sqrt(3))/(2) (ii) " sin " (pi)/(4) " cos " (pi)/(2) + "cos"(pi)/(4) " sin " (pi)/(12) = (sqrt(3))/(2) (iii) " cos " (2pi)/(3) " cos " (pi)/(4) - " sin " (2pi)/(3) " sin " (pi)/(4) =(-(sqrt(3) +1))/(2sqrt(2))

Prove that; 2(sin(5 pi))/(12)(sin pi)/(12)=(1)/(2)

Prove that 2sin((5 pi)/(12))cos((pi)/(12))=(2+sqrt(3))/(2)

Prove that (i) " sin " .(pi)/(6). " cos " .(pi)/(6) = (sqrt(3))/(4) " " (iii) cos^(2) .(pi)/(2) - sin^(2) .(pi)/(2) =(sqrt(3))/(2)

2sin((5 pi)/(12))(sin((pi)/(12)))=

(cos pi) / (12) - (sin pi) / (12) = (1) / (sqrt (2))

Prove that (i) " tan"^(2) .(pi)/(3) + 2cos^(2) .(pi)/(4)+ 3 sec^(2).(pi)/(6)+ 4 cos^(2).(pi)/(2)=8 (ii) " sin ".(pi)/(6) " cos 0 + sin ".(pi)/(4) " cos " .(pi)(4) + " sin " .(pi)/(3) "cos " .(pi)/(6) =(7)/(4) (iii) " 4sin " (pi)/(6) " sin"^(2) (pi)/(3) + 3 " cos " .(pi)/(3) " tan ".(pi)/(4) = " cosec"^(2).(pi)/(2)=4

(cos ((pi) / (12)) - sin ((pi) / (12))) (tan ((pi) / (12)) + cot ((pi) / (12))) =

(cos ((pi) / (12)) - sin ((pi) / (12))) ((tan pi) / (12) + (cot pi) / (12))