Home
Class 11
MATHS
If sin x=(-1)/(2) " and x lies in Quad...

If sin `x=(-1)/(2) " and x` lies in Quadrant IV find the values of
`(i) " sin ".(x)/(2) " "(ii) " cos " (x)/(2) " " (iii) " tan " (x)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \sin\left(\frac{x}{2}\right) \), \( \cos\left(\frac{x}{2}\right) \), and \( \tan\left(\frac{x}{2}\right) \) given that \( \sin x = -\frac{1}{2} \) and \( x \) lies in the fourth quadrant. ### Step 1: Find the angle \( x \) Since \( \sin x = -\frac{1}{2} \) and \( x \) is in the fourth quadrant, we can find the reference angle. The angle whose sine is \( \frac{1}{2} \) is \( 30^\circ \) (or \( \frac{\pi}{6} \) radians). Therefore, in the fourth quadrant: \[ x = 360^\circ - 30^\circ = 330^\circ \quad \text{or} \quad x = \frac{11\pi}{6} \text{ radians} \] ### Step 2: Use the half-angle formulas We will use the half-angle formulas for sine, cosine, and tangent: 1. \( \sin\left(\frac{x}{2}\right) = \sqrt{\frac{1 - \cos x}{2}} \) 2. \( \cos\left(\frac{x}{2}\right) = \sqrt{\frac{1 + \cos x}{2}} \) 3. \( \tan\left(\frac{x}{2}\right) = \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} \) ### Step 3: Find \( \cos x \) Using the Pythagorean identity: \[ \sin^2 x + \cos^2 x = 1 \] Substituting \( \sin x = -\frac{1}{2} \): \[ \left(-\frac{1}{2}\right)^2 + \cos^2 x = 1 \] \[ \frac{1}{4} + \cos^2 x = 1 \] \[ \cos^2 x = 1 - \frac{1}{4} = \frac{3}{4} \] Thus, \( \cos x = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \) (positive in the fourth quadrant). ### Step 4: Calculate \( \sin\left(\frac{x}{2}\right) \) Now we can find \( \sin\left(\frac{x}{2}\right) \): \[ \sin\left(\frac{x}{2}\right) = \sqrt{\frac{1 - \cos x}{2}} = \sqrt{\frac{1 - \frac{\sqrt{3}}{2}}{2}} = \sqrt{\frac{2 - \sqrt{3}}{4}} = \frac{\sqrt{2 - \sqrt{3}}}{2} \] Since \( \frac{x}{2} \) is in the second quadrant, \( \sin\left(\frac{x}{2}\right) \) is positive. ### Step 5: Calculate \( \cos\left(\frac{x}{2}\right) \) Next, we find \( \cos\left(\frac{x}{2}\right) \): \[ \cos\left(\frac{x}{2}\right) = \sqrt{\frac{1 + \cos x}{2}} = \sqrt{\frac{1 + \frac{\sqrt{3}}{2}}{2}} = \sqrt{\frac{2 + \sqrt{3}}{4}} = \frac{\sqrt{2 + \sqrt{3}}}{2} \] Since \( \frac{x}{2} \) is in the second quadrant, \( \cos\left(\frac{x}{2}\right) \) is negative: \[ \cos\left(\frac{x}{2}\right) = -\frac{\sqrt{2 + \sqrt{3}}}{2} \] ### Step 6: Calculate \( \tan\left(\frac{x}{2}\right) \) Now we can find \( \tan\left(\frac{x}{2}\right) \): \[ \tan\left(\frac{x}{2}\right) = \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} = \frac{\frac{\sqrt{2 - \sqrt{3}}}{2}}{-\frac{\sqrt{2 + \sqrt{3}}}{2}} = -\frac{\sqrt{2 - \sqrt{3}}}{\sqrt{2 + \sqrt{3}}} \] ### Summary of Results 1. \( \sin\left(\frac{x}{2}\right) = \frac{\sqrt{2 - \sqrt{3}}}{2} \) 2. \( \cos\left(\frac{x}{2}\right) = -\frac{\sqrt{2 + \sqrt{3}}}{2} \) 3. \( \tan\left(\frac{x}{2}\right) = -\frac{\sqrt{2 - \sqrt{3}}}{\sqrt{2 + \sqrt{3}}} \)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15D)|21 Videos
  • THREE-DIMENSIONAL GEOMETRY

    RS AGGARWAL|Exercise EXERCISE 26 C|13 Videos
  • TRIGONOMETRIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE|21 Videos

Similar Questions

Explore conceptually related problems

If cos x=- (1)/(3) and x lies in Quadrant III find the values of (i) " sin " (x)/(2) , (ii) " cos " (x)/(2) , (iii) " tan " (x)/(2)

If cos (x)/(2) =(12)/(13) and x lies in Quadrant I find the value of sin x

If cos x=(-3)/(5) " and " .(pi)/(2) lt x lt pi find the values of (i) " sin .(x)/(2) " " (ii) " cos " (x)/(2) " " (iii) " tan " (x)/(2)

If s in x=-(3)/(5) and x lies in IInd quadrant find the values of s in2x and (sin x)/(2)

If sin x=(-2sqrt(6))/(5) "and " x lies Quadrant III find the values of cos x and cot x

If sin x=(sqrt(5))/(3) "and " .(pi)/(3) lt x lt pi find the values of (i) " sin " (x)/(2) " " (ii) " cos " (x)/(2) " " (iii) " tan " (x)/(2)

If tan x=(-4)/(3) " and " .(pi)/(2) lt x lt pi find the values of (i) " sin ".(x)/(2) " ""(ii) cos " .(x)/(2) " ""(iii) tan ".(x)/(2)

if tan x=-(4)/(3),x lies in Il quadrant,then find the value of (sin x)/(2)

If " sin " x =- (1)/(2) " and " pi lt x lt .(3pi)/(2) find the value of (i) " sin "2x , (ii) " cos " 2x (iii) " tan " 2x

If sin x=(sqrt(5))/(3) and x lies in IInd quadrant,find the values of (cos x)/(2),(sin x)/(2) andtan (x)/(2)