Home
Class 11
MATHS
Prove that .^(2n)C(n)=(2^(n)xx[1*3*5...(...

Prove that `.^(2n)C_(n)=(2^(n)xx[1*3*5...(2n-1)])/(n !)`.

Text Solution

Verified by Experts

`.^(1n)C_(n)=((2n)!)/((n!)(2n-n)!)=((2n)!)/((n!)^(2))`
`=((2n)(2n-1)(2n-2)...4*3*2*1)/((n!)^(2))`
`=([(2n)(2n-2)(2n-4)...4*2]xx[(2n-1)(2n-3)...5*3*1])/((n!)^(2))`
`=(2^(n)[n(n-1)(n-2)...2*1]xx[(2n-1)(2n-3)...5*3*1])/((n!)^(2))`
`=(2^(n)xx(n!)xx[1*3*5...(2n-3)(2n-1)])/((n!)^(2))`
`=(2^(n)xx[1*3*5...(2n-3)(2n-1)])/((n!))`.
Hence, `.^(2n)C_(n)=(2^(n)xx{1xx3xx5xx...xx(2n-1)})/(n!)`.
Promotional Banner

Topper's Solved these Questions

  • COMBINATIONS

    RS AGGARWAL|Exercise Practical Problems on Combinations (Solved Examples)|25 Videos
  • COMBINATIONS

    RS AGGARWAL|Exercise Mixed Problems on Permutations and combinations (Solved Examples)|5 Videos
  • COMBINATIONS

    RS AGGARWAL|Exercise Exercise 9D|18 Videos
  • CIRCLE

    RS AGGARWAL|Exercise EXERCISE 21 B|18 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 5 G|28 Videos

Similar Questions

Explore conceptually related problems

Prove that: :2^(n)C_(n)=(2^(n)[1.3.5(2n-1)])/(n!)

Prove that ((2n+1)!)/(n!)=2^(n)[1.3.5.....(2n-1)*(2n+1)]

Prove that ((4n)C_(2n))/((2n)C_(n))=(1.3.5...(4n-1))/([1.3.5...(2n-1)]^(2))

Prove that ((2n)!)/(n!) =2^(n) xx{1xx3xx5xx...xx(2n-1)}.

Prove that ((2n+1)!)/(n!)=2^(n){1.3.5(2n-1)(2n+1)}

Prove that: :((2n)!)/(n!)={1.3.5...(2n-1)}2^(n)

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-1)C_(n)+^(n)C_(2)xx^(2n-2)C_(n)++(-1)^(n)sim nC_(n)^(n)C_(n)=1

Prove that: ^(2n)C_0-3.^(2n)C_1+3^2.^(2n)C_2-..+(-1)^(2n) ..3^(2n)^(2n)C_(2n)=4^n for all value of N

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-2)C_(n)+^(n)C_(2)^(2n-4)C_(n)-...=2^(n)

Prove that C_(0)^(2)+C_(1)^(2)+...C_(n)^(2)=(2n!)/(n!n!)