Home
Class 12
MATHS
Let P1=I=[{:(1,,0,,0),(0,,1,,0),(0,,0,,1...

Let `P_1=I=[{:(1,,0,,0),(0,,1,,0),(0,,0,,1):}],P_2=[{:(1,,0,,0),(0,,0,,1),(0,,1,,0):}]`
`P_3=[{:(0,,1,,0),(1,,0,,0),(0,,0,,1):}],P_4=[{:(0,,1,,0),(0,,0,,1),(1,,0,,0):}]`
`P_5=[{:(0,,0,,1),(1,,0,,0),(0,,1,,0):}],P_6=[{:(0,,0,,1),(0,,1,,0),(1,,0,,0):}]` and
`X=sum_(k=1)^(6)P_(K)[{:(2,,1,,3),(1,,0,,2),(3,,2,,1):}]P_(K)^(T)`
Where , `P_(K)^(T)` denotes the transpose of the matrix `P_(X)`. then which of the following option is/are correct ?

A

X is a symmertic matrix

B

The sum of diagonal entries of X is 18

C

`X-30 I` is an invertible matrix

D

If`X[{:(1),(1),(1):}]=alpha[{:(1),(1),(1):}],then" "alpha=30`

Text Solution

Verified by Experts

The correct Answer is:
A, B, D

Given matrices,
`P_(1) = I = [{:(,1,0,0),(,0,1,0),(,0,0,1):}],P_(2)[{:(,1,0,0),(,0,0,1),(,0,1,0):}], P_(3)[{:(,0,1,0),(,1,0,0),(,0,0,1):}]`
`P_(4)=[{:(,0,1,0),(,0,0,1),(,1,0,0):}],P_(5)=[{:(,0,0,1),(,0,0,1),(,0,1,0):}], P_(6)=[{:(,0,0,1),(,0,1,0),(,0,1,0):}]`
and `X = underset(k-1)overset(6)sumP_(k) [{:(,2,1,3),(,1,0,2),(,3,2,1):}] P_(K)^(T)`
`because P_(1)^(T) = P_(1),P_(2)^(T)= P_(2),P_(3)^(T) = P_(3), P_(4)^(T) = P_(5), P_(5)^(T) = P_(4)` and
`P_(6)^(T) = P_(6)` and Let Q`= [{:(,2,1,3),(,1,0,2),(,3,2,1):}] and because Q^(T) = Q`
Now,`X= (P_(1)QP_(1)^(T)) + (P_(2)QP_(2)^(T))^(T) + (P_(3)QP_(3)^(T)) + (P_(4)QP_(4)^(T))+(P_(5)QP_(5)^(T))+(P_(6)QP_(6)^(T))`
So, `X^(T) = (P_(1)QP_(1)^(T))^(T) + (P_(2)QP_(2)^(T))^(T)+(P_(3)QP_(3)^(T))^(T) + (P_(4)QP_(4)^(T))^(T) + (P_(5)QP_(5)^(T))^(T)+(P_(6)QP_(6)^(T))^(T)`
`P_(1)QP_(1)^(T) + P_(2)QP_(2)^(T)+P_(3)QP_(3)^(T) + P_(4)QP_(4)^(T) + P_(5)QP_(5)^(T)+P_(6)QP_(6)^(T)`
`[because(ABC)^(T) = C^(T)B^(T)A^(T) and (A^(T))^(T) = A and Q^(T) = Q]`
`rArr X^(T) = X`
`rArr` X is a symmetric matrix.
The sum of diagonal entries of `X = Tr(x)`
`=sum_(i=1)^(6) T_(r)(P_(i)QP_(i)^(T))`
`= sum_(i-1)^(6) T_(r)(QP_(i)^(T)P_(i))" "[becauseT_(r)(ABC) = T_(r)(BCA)]`
`= sum_(i=l)^(6) T_(r)(Ql) " "[because P_(i)`'s "are othogonal matrices"]`
`=sum_(i=1)^(6) T_(r)(Q)= 6T_(r)(Q)= 6xx3 = 18`
`Now Let `R= [{:(,1),(,1),(,1):}]`, then
`XR = sum_(k=1)^(6) (P_(k)QP_(k)^(T)) R = sum_(k=1)^(6) (P_(k) QP_(k)^(T)R)`
`= sum_(k=1)^(6) (P_(k) QR)" "[becauseP_(k)^(T)R = R]`
`= sum_(k=1)^(6) P_(k)[{:(6),(3),(6):}] = sum_(k=1)^(6) P_(k) [{:(6),(3),(6):}] = [{:(2,2,2),(2,2,2),(2,2,2):}][{:(6),(3),(6):}]`
`rArr XR = [{:(30),(30),(30):}]rArr XR = 30 R rArr X [{:(1),(1),(1):}]= 30[{:(1),(1),(1):}]`
`rArr (X-30I0 R = 0 rArr |X-30I|=0`
So, `(X - 30I)` is not invertible and value of `alpha = 30`.
Hence, options (a),(b) and (c) are correct.
Promotional Banner

Topper's Solved these Questions

  • SOLVED PAPER 2019

    IIT JEE PREVIOUS YEAR|Exercise Paper -2 section-2|6 Videos
  • SOLVED PAPER 2019

    IIT JEE PREVIOUS YEAR|Exercise Paper -2 section-3|4 Videos
  • SOLVED PAPER 2019

    IIT JEE PREVIOUS YEAR|Exercise Paper -1 section-3|6 Videos
  • SEQUENCES AND SERIES

    IIT JEE PREVIOUS YEAR|Exercise RELATION BETWEEN AM,GM, HM AND SOME SPECIAL SERIES|34 Videos
  • STRAIGHT LINE AND PAIR OF STRAIGHT LINES

    IIT JEE PREVIOUS YEAR|Exercise GENERAL EQUATION OF PAIR OF STRAIGHT LINES (Objective Questions I) (Only one correct option)|1 Videos

Similar Questions

Explore conceptually related problems

let P_(1)=[(1,0,0),(0,1,0),(0,0,1)],P_(2)=[(1,0,0),(0,0,1),(0,1,0)],P_(3)=[(0,1,0),(1,0,0),(0,0,1)],P_(4)=[(0,1,0),(0,0,1),(1,0,0)],P_(5)=[(0,0,1),(1,0,0),(0,1,0)],P_(6)=[(0,0,1),(0,1,0),(1,0,0)] and X=sum_(k=1)^(6) P_(k)[(2,1,3),(1,0,2),(3,2,1)]P_(k)^(T) Where P_(k)^(T) is transpose of matrix P_(k) . Then which of the following options is/are correct?

If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

If A={:[(0,1,0),(1,0,0),(0,0,1)]:}," then "A^(-1)=

If P=[(0,1,0),(0,2,1),(2,3,0)],Q=[(1,2),(3,0),(4,1)] , find PQ.

The inverse of the matrix [(0,0,1),(0,1,0),(1,0,0)] is (A) [(0,0,1),(0,1,0),(1,0,0)] (B) [(0,0,-1),(0,-1,0),(-1,0,0)] (C) [(1,0,0),(0,1,0),(0,0,1)] (D) [(1/2,0,0),(0,1/2,0),(0,0,1/2)]

If A={:[(3,2,7),(1,1,4),(-1,-1,0)]:},B={:[(1,0,3),(2,1,0),(0,-1,-3)]:}andC{:[(1,0,0),(0,1,0),(0,0,1)]:} , then find 2A+3B-7C.

show that (i) [{:(5,-1),(6,7):}][{:(2,3),(3,4):}]ne[{:(2,3),(3,4):}][{:(5,-1),(6,7):}] (ii) [{:(1,2,3),(0,1,0),(1,1,0):}][{:(-1,1,0),(0,-1,1),(2,3,4):}] ne[{:(-1,1,0),(0,-1,1),(2,3,4):}][{:(1,2,3),(0,1,0),(1,1,0):}]

If P=[(1,2,4),(3,1,0),(0,0,1)], Q=[(1,-2,-3),(-3,1,9),(0,0,-5)] then (PQ)^(-1) equals to