Home
Class 12
MATHS
The value of the integral int(0)^(pi//...

The value of the integral
`int_(0)^(pi//2)(3sqrt(costheta))/((sqrt(costheta)+sqrt(sintheta))^5)d theta` equals ............

Text Solution

Verified by Experts

The correct Answer is:
`0.5`

Ket Idea : Use property `int _(0)^(a)f(x)dx=int _(0)^(a)f(a-x)dx`
The given intergral
`I= int_(0)^(pi//2)(3sqrt(cos theta))/((sqrt(cos theta) +sqrt(sin theta ))^5)d theta` ......(i)
`I= int_(0)^(pi//2)(3sqrt(sin theta))/((sqrt(sin theta) +sqrt(cos theta ))^5)d theta` ......(ii)
[Using the property `int _(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx`]
Now, on adding integrals (1) and (ii), we get
`2I= int_(0)^(pi//2)(3)/((sqrt(sintheta) +sqrt(costheta ))^4)d theta`
`=int _(0)^(pi//2)(3sec^2 theta)/(1+sqrt(tan theta ))^4d theta`
Now, let `tan theta =t^2rArr sec^2 theta = 2t dt`
and at `theta=(pi)/(2),t to oo`
and at `theta= 0,t to 0`
So, `2I=int _(0)^(oo) (6t dt)/(1+t)^4=6int_(0)^(oo)(t+I-1)/(t+1)^4=dt `
`rArr I=3[int_(0)^(oo)(dt)/(t-1)^3-int_(0)^(oo)(dt)/(t+I)^4]=3[-(1)/(2(t+1)^2)+(1)/(3(t+1)^3)]_(0)^(oo)`
`rArr I=3 [(1)/(2)-(1)/(3)]=3((1)/(6))=(1)/(2)rArr I=0.5`.
Promotional Banner

Topper's Solved these Questions

  • SOLVED PAPER 2019

    IIT JEE PREVIOUS YEAR|Exercise Paper -2 section-3|4 Videos
  • SOLVED PAPER 2019

    IIT JEE PREVIOUS YEAR|Exercise Paper -2 section-1|8 Videos
  • SEQUENCES AND SERIES

    IIT JEE PREVIOUS YEAR|Exercise RELATION BETWEEN AM,GM, HM AND SOME SPECIAL SERIES|34 Videos
  • STRAIGHT LINE AND PAIR OF STRAIGHT LINES

    IIT JEE PREVIOUS YEAR|Exercise GENERAL EQUATION OF PAIR OF STRAIGHT LINES (Objective Questions I) (Only one correct option)|1 Videos

Similar Questions

Explore conceptually related problems

" The value of the integral "int_(0)^( pi/2)(12sqrt(cos theta))/((sqrt(cos theta)+sqrt(sin theta))^(5))d theta" equals "...

int _(0)^(pi//2) (2sqrt(cos theta))/(3(sqrt(sin theta )+ sqrt(cos theta ))) d theta is equal to

if I=int_(0)^(pi//2)(3sqrt(costheta))/((sqrt(sintheta)+sqrt(costheta))^(5))d theta , then I^(2) is equal to

Evaluate the following integral: int_0^(pi//2)(sintheta)/(sqrt(1+costheta))d theta

int((sintheta+costheta))/sqrt(sin2theta)"d"theta=

int_(0)^(pi//3)(costheta)/(5-4sintheta)d theta equal to

sqrt(3)costheta+sintheta=2

int_0^(pi/2) sqrt(sintheta)cos^5theta d theta