Home
Class 12
MATHS
If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx)...

If `y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]`, where `0lt xlt(pi)/(2),` then `(dy)/(dx)` is equal to

A

`(1)/(2)`

B

2

C

`sinx+cosx`

D

`sinx-cosx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function given by: \[ y = \cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) \] ### Step 1: Simplify the Argument of the Cotangent Inverse We start with the expression inside the cotangent inverse. We can use the identity for sine: \[ \sin x = 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) \] Thus, we can express \(1 + \sin x\) and \(1 - \sin x\) in terms of sine and cosine of half angles: \[ 1 + \sin x = 1 + 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) = \left(\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)\right)^2 \] \[ 1 - \sin x = 1 - 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) = \left(\sin\left(\frac{x}{2}\right) - \cos\left(\frac{x}{2}\right)\right)^2 \] ### Step 2: Substitute Back into the Function Now substituting these back into the expression for \(y\): \[ y = \cot^{-1}\left(\frac{\left(\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)\right)}{\left(\sin\left(\frac{x}{2}\right) - \cos\left(\frac{x}{2}\right)\right)}\right) \] ### Step 3: Recognize the Cotangent Function This simplifies to: \[ y = \cot^{-1}\left(\frac{a+b}{a-b}\right) \] This can be recognized as: \[ y = \cot\left(\frac{x}{2}\right) \] ### Step 4: Differentiate \(y\) Now we differentiate \(y\): \[ \frac{dy}{dx} = \frac{d}{dx} \left(\frac{x}{2}\right) = \frac{1}{2} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{1}{2} \]

To solve the problem, we need to differentiate the function given by: \[ y = \cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) \] ### Step 1: Simplify the Argument of the Cotangent Inverse ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    NDA PREVIOUS YEARS|Exercise DIRECTIONS|60 Videos
  • DIFFERENTIAL EQUATION

    NDA PREVIOUS YEARS|Exercise MCQs|119 Videos

Similar Questions

Explore conceptually related problems

" If "y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))](0ltxltpi//2)," then "(dy)/(dx)=

If y=tan^(-1) [(sqrt(1+sinx)-sqrt(1-sin x))/(sqrt(1+sin x)+sqrt(1-sin x)]] where 0 lt x lt pi/2 find (dy)/(dx)

Find (dy)/(dx) of y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

If coty=(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))," then "(dy)/(dx)=

If y(x) = cot^(-1) ((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))), x in ((pi)/(2), pi) , then (dy)/(dx) at x=(5pi)/(6) is :

d/dx[sqrt((1+sinx)/(1-sinx))]

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqrt(1+sinx))} is (0 lt x lt (pi)/(2))

If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sinx)))," find "(dy)/(dx).

NDA PREVIOUS YEARS-DERIVATIVES-MCQs
  1. Differentiate tan^(-1)((sqrt(1+x^2-1))/x) with respect to tan^(-1)x...

    Text Solution

    |

  2. The derivative of ln(x+sinx) with respect to (x+cosx) is

    Text Solution

    |

  3. If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]...

    Text Solution

    |

  4. If x^(a)y^(b)=(x-y)^(a+b), then the value of (dy)/(dx)-(y)/(x) is equa...

    Text Solution

    |

  5. If s=sqrt(t^(2)+1), then (d^(2)s)/(dt^(2)) is equal to

    Text Solution

    |

  6. int(dx)/(1+e^(-x)) is equal to

    Text Solution

    |

  7. Let f:R rarr R be a function such that f(x)=x^(3)+x^(2)f'(1)+xf''(2)...

    Text Solution

    |

  8. Let f:R rarr R be a function such that f(x)=x^(3)+x^(2)f'(1)+xf''(2)...

    Text Solution

    |

  9. Let f:R rarr R be a function such that f(x)=x^(3)+x^(2)f'(1)+xf''(2)...

    Text Solution

    |

  10. Let f:R rarr R be a function such that f(x)=x^(3)+x^(2)f'(1)+xf''(2)...

    Text Solution

    |

  11. If y=log(10)x+log(x)10+log(x)x+log(10)10 then what is ((dy)/(dx))(x=10...

    Text Solution

    |

  12. Let f(x)=[|x|-|x-1|]^(2) What is f'(x) equal to when x gt 1?

    Text Solution

    |

  13. Let f(x)=[|x|-|x-1|]^(2) What is f'(x) equal to when 0lt xlt1?

    Text Solution

    |

  14. Let f(x)=[|x|-|x-1|]^(2) Which of the following equation is/are corr...

    Text Solution

    |

  15. Let f(x+y)=f(x)f(y) for all x and y. Then what is f'(5) equal ot [wher...

    Text Solution

    |

  16. What is the derivative of log(10)(5x^(2)+3) with respect to x?

    Text Solution

    |

  17. If y=(cosx)^(cosx)^(cosx)^^((((oo)))),p rov et h a t(dy)/(dx)=-(y^2tan...

    Text Solution

    |

  18. If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)),x > 0. Find (dy)/(dx)...

    Text Solution

    |

  19. If y=cos^(-1)((2x)/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  20. What is the derivative of the function f(x)=e^(tanx)+ln(secx)-e^(lnx...

    Text Solution

    |