Home
Class 12
MATHS
Consider the function f''(x) = sec^(4) x...

Consider the function `f''(x) = sec^(4) x + 4 " with " f(0) = 0 and f '(0) = 0` What is `f(x)` equal to ?

A

`(2 ln sec x)/(3) + (tan^(2)x)/(6) + 2x^(2)`

B

`(3ln sec x)/(2) + (cot^(2)x)/(6) + 2x^(2)`

C

`(4ln sec x)/(3) + (sec^(2)x)/(6) + 2x^(2)`

D

`ln sec x + (tan^(4)x)/(12) + 2x^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the function \( f(x) \) given that \( f''(x) = \sec^4 x + 4 \) with initial conditions \( f(0) = 0 \) and \( f'(0) = 0 \), we will follow these steps: ### Step 1: Integrate \( f''(x) \) to find \( f'(x) \) We start with the second derivative: \[ f''(x) = \sec^4 x + 4 \] Integrating both sides with respect to \( x \): \[ f'(x) = \int (\sec^4 x + 4) \, dx \] This can be split into two parts: \[ f'(x) = \int \sec^4 x \, dx + \int 4 \, dx \] ### Step 2: Calculate the integral of \( \sec^4 x \) The integral of \( \sec^4 x \) is known: \[ \int \sec^4 x \, dx = \frac{1}{3} \tan^3 x + \tan x + C_1 \] The integral of \( 4 \) is straightforward: \[ \int 4 \, dx = 4x + C_2 \] Combining these results, we have: \[ f'(x) = \frac{1}{3} \tan^3 x + \tan x + 4x + C \] ### Step 3: Apply the initial condition for \( f'(0) \) Using the initial condition \( f'(0) = 0 \): \[ f'(0) = \frac{1}{3} \tan^3(0) + \tan(0) + 4(0) + C = 0 \] \[ 0 + 0 + 0 + C = 0 \implies C = 0 \] Thus, we have: \[ f'(x) = \frac{1}{3} \tan^3 x + \tan x + 4x \] ### Step 4: Integrate \( f'(x) \) to find \( f(x) \) Now we integrate \( f'(x) \): \[ f(x) = \int \left( \frac{1}{3} \tan^3 x + \tan x + 4x \right) \, dx \] This can be split into three parts: \[ f(x) = \frac{1}{3} \int \tan^3 x \, dx + \int \tan x \, dx + \int 4x \, dx \] ### Step 5: Calculate the integrals 1. The integral of \( \tan x \) is: \[ \int \tan x \, dx = -\ln |\cos x| + C_3 \] 2. The integral of \( 4x \) is: \[ \int 4x \, dx = 2x^2 + C_4 \] 3. The integral of \( \tan^3 x \) can be computed using the identity \( \tan^3 x = \tan x \cdot \sec^2 x - \tan x \): \[ \int \tan^3 x \, dx = \frac{1}{3} \tan^3 x - \ln |\cos x| + C_5 \] Combining these results: \[ f(x) = \frac{1}{3} \left( \frac{1}{3} \tan^3 x - \ln |\cos x| \right) + (-\ln |\cos x|) + 2x^2 + C \] ### Step 6: Apply the initial condition for \( f(0) \) Using the initial condition \( f(0) = 0 \): \[ f(0) = \frac{1}{3} \left( 0 \right) - \ln |\cos(0)| + 2(0)^2 + C = 0 \] \[ 0 - 0 + 0 + C = 0 \implies C = 0 \] ### Final Function Thus, the function \( f(x) \) is: \[ f(x) = \frac{1}{9} \tan^3 x - \ln |\cos x| + 2x^2 \]

To find the function \( f(x) \) given that \( f''(x) = \sec^4 x + 4 \) with initial conditions \( f(0) = 0 \) and \( f'(0) = 0 \), we will follow these steps: ### Step 1: Integrate \( f''(x) \) to find \( f'(x) \) We start with the second derivative: \[ f''(x) = \sec^4 x + 4 \] ...
Promotional Banner

Topper's Solved these Questions

  • HEIGHT & DISTANCE

    NDA PREVIOUS YEARS|Exercise Math|45 Videos
  • MATRICES & DETERMINANTS

    NDA PREVIOUS YEARS|Exercise MQS|240 Videos

Similar Questions

Explore conceptually related problems

Consider the function f ''(x) = sec^4 (x) + 4 with f(0) = 0 and f'(0) = 0 f'(x) equal to ?

If f''(x) = sec^(2) x and f (0) = f '(0) = 0 then:

Consider the function f(x)=1/x^(2) for x gt 0 . To find lim_(x to 0) f(x) .

A function f is such that f'(x)=6-4 sin 2x and f(0)=3. What is f(x) equal to?

Consider the function f(x)=x^(30)ln x^(20) for x>0 If f is continuous at x=0 then f(0) is equal to 0( b) is equal to (2)/(3) is equal to 1 can not be defined to make f(x) continuous at x=0

Consider the function f(x)={:{(x^(2)|x|x!=0),(" 0 "x=0):}} what is f'(0) equal to ?

Let f be a function satisfying f''(x)=x^(-(3)/(2)) , f'(4)=2 and f(0)=0 . Then f(784) equals……..