Home
Class 12
MATHS
A((alpha))=[{:(cos alpha,-sin alpha),(si...

`A_((alpha))=[{:(cos alpha,-sin alpha),(sin alpha,cos alpha):}],A_((beta))=[{:(cos beta,-sin beta),(sin beta,cos beta):}]`
Which one of the following is correct ?

A

`A_((-alpha))A_((-beta))=A_((alpha+beta))`

B

`A_((-alpha))A_((beta))=A_((alpha-beta))`

C

`A_((alpha))A_((-beta))=A_({-(beta-alpha)})`

D

`A_((alpha))A_((beta))=A_((alpha+beta))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrices \( A(\alpha) \) and \( A(\beta) \) and find the relationship between their product and another matrix. Given: \[ A(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \] \[ A(\beta) = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} \] ### Step 1: Multiply the matrices \( A(\alpha) \) and \( A(\beta) \) To find \( A(\alpha) \cdot A(\beta) \), we will multiply the two matrices: \[ A(\alpha) \cdot A(\beta) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} \] ### Step 2: Calculate the elements of the resulting matrix 1. **First row, first column:** \[ \cos \alpha \cdot \cos \beta + (-\sin \alpha) \cdot \sin \beta = \cos \alpha \cos \beta - \sin \alpha \sin \beta = \cos(\alpha + \beta) \] 2. **First row, second column:** \[ \cos \alpha \cdot (-\sin \beta) + (-\sin \alpha) \cdot \cos \beta = -\cos \alpha \sin \beta - \sin \alpha \cos \beta = -(\sin \alpha \cos \beta + \cos \alpha \sin \beta) = -\sin(\alpha + \beta) \] 3. **Second row, first column:** \[ \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta = \sin \alpha \cos \beta + \cos \alpha \sin \beta = \sin(\alpha + \beta) \] 4. **Second row, second column:** \[ \sin \alpha \cdot (-\sin \beta) + \cos \alpha \cdot \cos \beta = -\sin \alpha \sin \beta + \cos \alpha \cos \beta = \cos(\alpha + \beta) \] ### Step 3: Write the resulting matrix Thus, the product \( A(\alpha) \cdot A(\beta) \) is: \[ A(\alpha) \cdot A(\beta) = \begin{pmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{pmatrix} \] ### Step 4: Identify the resulting matrix This resulting matrix can be recognized as \( A(\alpha + \beta) \): \[ A(\alpha + \beta) = \begin{pmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{pmatrix} \] ### Conclusion Thus, we have shown that: \[ A(\alpha) \cdot A(\beta) = A(\alpha + \beta) \] ### Final Answer The correct option is: \[ A(\alpha) \cdot A(\beta) = A(\alpha + \beta) \] ---

To solve the problem, we need to analyze the given matrices \( A(\alpha) \) and \( A(\beta) \) and find the relationship between their product and another matrix. Given: \[ A(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \] \[ A(\beta) = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    NDA PREVIOUS YEARS|Exercise MCQ|59 Videos
  • PAIR OF STRAIGHT LINES

    NDA PREVIOUS YEARS|Exercise Example|12 Videos

Similar Questions

Explore conceptually related problems

cos alpha,-sin alpha,1sin alpha,cos alpha,1cos(alpha+beta),-sin(alpha+beta),1]|

cos alpha,-sin alpha,1sin alpha,cos alpha,1cos(alpha+beta),-sin(alpha+beta),1]|

If Delta = |(cos alpha,- sin alpha,1),(sin alpha,cos alpha,1),(cos (alpha + beta),- sin (alpha + beta),1)| , then

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

If A,=[[cos alpha,-sin alphasin alpha,cos alpha]] and B=,[[cos beta,cos alpha]] and B=[[cos beta,-sin betasin beta,cos betasin beta,cos beta]] then show that AB=BA

A = [[0, sin alpha, sin alpha sin beta-sin alpha, 0, cos alpha cos beta-sin alpha sin beta, -cos alpha cos beta, 0]]

If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)] and B=[(cos^(2)betas,cos beta sin beta),(cos beta sin beta, sin^(2) beta)] are two matrices such that the product AB is null matrix, then alpha-beta is

(sin^(2)alpha-sin^(2)beta)/(sin alpha cos alpha-sin beta cos beta)=tan(alpha+beta)

The value of the determinant ,cos alpha,-sin alpha,1sin alpha,cos alpha,1cos(alpha+beta),-sin(alpha+beta),1]| is equal

NDA PREVIOUS YEARS-MATRICES & DETERMINANTS-MQS
  1. A((alpha))=[{:(cos alpha,-sin alpha),(sin alpha,cos alpha):}],A((beta)...

    Text Solution

    |

  2. If f(x)=|{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x)...

    Text Solution

    |

  3. If the matrix [{:(cos theta,sin theta,0),(sin theta,cos theta,0),(0,0,...

    Text Solution

    |

  4. For what values of k, does the system of linear equations x+y+z=2, 2x+...

    Text Solution

    |

  5. Let A =[{:(1,0),(0,-1):}]and B =[{:(1,x),(0,1):}] If AB = BA, then wha...

    Text Solution

    |

  6. If a matrix B is obtained from a square matrix A by interchanging any ...

    Text Solution

    |

  7. Let A = (a(ij))(n xx n) and adj A = (alpha(ij)) If A = [{:(1,2,3),(4...

    Text Solution

    |

  8. If A and B are non-singular square matrices of same order then adj(AB)...

    Text Solution

    |

  9. M is a matrix with real entries given by M=[{:(4,k,0),(6,3,0),(2,t,k):...

    Text Solution

    |

  10. Let A = [{:(1,1,1),(1,1,1),(1,1,1):}] be a square matrix of order 3. T...

    Text Solution

    |

  11. Let A and B be matrices of order 3 xx 3. If AB = 0, then which of the ...

    Text Solution

    |

  12. If A is a matrix of order p xx q and B is a matrix of order s xx t, un...

    Text Solution

    |

  13. If A is a square matrix such that A-A^(T) = 0, then which one of the ...

    Text Solution

    |

  14. The largest value of a third order determinant whose elements are equa...

    Text Solution

    |

  15. What is the inverse of A=[{:(1+i,1+i),(-1+i,1-i):}]?

    Text Solution

    |

  16. In respect of the equation [{:(2,3),(4,6):}][{:(x),(y):}]=[{:(" "5),(c...

    Text Solution

    |

  17. If A^(-1)=[{:(1,-2),(-2,2):}], what is det (A) ?

    Text Solution

    |

  18. From the matrix equation AB = AC, which one of the following can be co...

    Text Solution

    |

  19. What is the value of |{:(a,b,c),(b,c,a),(c,a,b):}| "if a"^(3) + b^(3) ...

    Text Solution

    |

  20. If A = [{:(1,2),(0,3):}] is a 2 xx 2 matrix and f(x) = x^(2) - x + 2 i...

    Text Solution

    |