Home
Class 12
MATHS
The integral int (dx)/(a cos x + b sin x...

The integral `int (dx)/(a cos x + b sin x)` is of the form `(1)/(r) " In" [tan ((x + alpha)/(2))]`
What is r equal to ?

A

`a^(2) + b^(2)`

B

`sqrt(a^(2) + b^(2))`

C

`a + b`

D

`sqrt(a^(2) + b^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{a \cos x + b \sin x} \) and find the value of \( r \) in the expression \( \frac{1}{r} \ln \left( \tan \left( \frac{x + \alpha}{2} \right) \right) \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{a \cos x + b \sin x} \] ### Step 2: Use Trigonometric Identity We can express \( a \cos x + b \sin x \) in a different form using the angle addition formula. We can write: \[ a \cos x + b \sin x = r \sin(\alpha) \cos x + r \cos(\alpha) \sin x \] where \( r = \sqrt{a^2 + b^2} \) and \( \sin(\alpha) = \frac{b}{r} \), \( \cos(\alpha) = \frac{a}{r} \). ### Step 3: Substitute in the Integral Now we substitute this into the integral: \[ I = \int \frac{dx}{r \sin(\alpha) \cos x + r \cos(\alpha) \sin x} \] This simplifies to: \[ I = \frac{1}{r} \int \frac{dx}{\sin(\alpha) \cos x + \cos(\alpha) \sin x} \] ### Step 4: Simplify the Integral Using the identity \( \sin(A + B) = \sin A \cos B + \cos A \sin B \), we can rewrite the denominator: \[ \sin(\alpha) \cos x + \cos(\alpha) \sin x = \sin(x + \alpha) \] Thus, the integral becomes: \[ I = \frac{1}{r} \int \frac{dx}{\sin(x + \alpha)} \] ### Step 5: Evaluate the Integral The integral \( \int \frac{dx}{\sin(x + \alpha)} \) can be evaluated using the logarithmic identity: \[ \int \frac{dx}{\sin x} = \ln \left| \tan \left( \frac{x}{2} + \frac{\alpha}{2} \right) \right| + C \] So we have: \[ I = \frac{1}{r} \ln \left| \tan \left( \frac{x + \alpha}{2} \right) \right| + C \] ### Step 6: Conclusion From the form of the integral, we can conclude that: \[ r = \sqrt{a^2 + b^2} \] Thus, the value of \( r \) is: \[ \boxed{\sqrt{a^2 + b^2}} \]

To solve the integral \( \int \frac{dx}{a \cos x + b \sin x} \) and find the value of \( r \) in the expression \( \frac{1}{r} \ln \left( \tan \left( \frac{x + \alpha}{2} \right) \right) \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{a \cos x + b \sin x} \] ...
Promotional Banner

Topper's Solved these Questions

  • HEIGHT & DISTANCE

    NDA PREVIOUS YEARS|Exercise Math|45 Videos
  • MATRICES & DETERMINANTS

    NDA PREVIOUS YEARS|Exercise MQS|240 Videos

Similar Questions

Explore conceptually related problems

The integral int (dx)/(a cos x + b sin x) is of the form (1)/(r) " In" [tan ((x + alpha)/(2))] What is alpha equal to ?

The integral int (dx)/(acosx+bsinx) is of the form (1)/(r )ln[tan((x+alpha)/(2))] What is r equal to ?

The integral int (dx)/(acosx+bsinx) is of the form (1)/(r )ln[tan((x+alpha)/(2))] What is alpha equal to ?

Integrate : (b) int ( cos 2x)/( cos x - sin x) dx,

Integrate int(x-sin x)/(1-cos x)dx

int(sin x+cos x)/(sin(x -alpha))dx is equal to

int tan(x-alpha).tan(x+alpha).tan 2x dx is equal to

int tan ^ (- 1) ((1 + cos x) / (sin x)) dx

Integrate : int(sec^(2)x)/(a+b tan x)dx