Home
Class 12
MATHS
The integral int (dx)/(a cos x + b sin x...

The integral `int (dx)/(a cos x + b sin x)` is of the form `(1)/(r) " In" [tan ((x + alpha)/(2))]`
What is `alpha` equal to ?

A

`tan^(-1) ((a)/(b))`

B

`tan^(-1) ((b)/(a))`

C

`tan^(-1) ((a + b)/(a -b))`

D

`tan^(-1) ((a -b)/(a +b))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{dx}{a \cos x + b \sin x}\) and find the value of \(\alpha\) such that the integral is of the form \(\frac{1}{r} \ln \left[\tan \left(\frac{x + \alpha}{2}\right)\right]\), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{dx}{a \cos x + b \sin x} \] ### Step 2: Express \(a\) and \(b\) in terms of \(r\) and \(\alpha\) Assume: \[ a = r \sin \alpha \quad \text{and} \quad b = r \cos \alpha \] where \(r = \sqrt{a^2 + b^2}\). ### Step 3: Substitute \(a\) and \(b\) into the integral Substituting \(a\) and \(b\) into the integral gives: \[ I = \int \frac{dx}{r \sin \alpha \cos x + r \cos \alpha \sin x} \] Factoring out \(r\) from the denominator: \[ I = \frac{1}{r} \int \frac{dx}{\sin \alpha \cos x + \cos \alpha \sin x} \] ### Step 4: Use the sine addition formula Using the sine addition formula, we can rewrite the denominator: \[ \sin \alpha \cos x + \cos \alpha \sin x = \sin(\alpha + x) \] Thus, we have: \[ I = \frac{1}{r} \int \frac{dx}{\sin(\alpha + x)} \] ### Step 5: Integrate The integral of \(\frac{1}{\sin(\alpha + x)}\) is: \[ \int \frac{dx}{\sin(\alpha + x)} = \ln \left| \tan\left(\frac{\alpha + x}{2}\right) \right| + C \] So, substituting back, we get: \[ I = \frac{1}{r} \ln \left| \tan\left(\frac{\alpha + x}{2}\right) \right| + C \] ### Step 6: Identify \(\alpha\) From the form of the integral, we can see that it matches: \[ \frac{1}{r} \ln \left[\tan\left(\frac{x + \alpha}{2}\right)\right] \] Thus, we can conclude that: \[ \alpha = \tan^{-1}\left(\frac{a}{b}\right) \] ### Final Answer Therefore, the value of \(\alpha\) is: \[ \alpha = \tan^{-1}\left(\frac{a}{b}\right) \]

To solve the integral \(\int \frac{dx}{a \cos x + b \sin x}\) and find the value of \(\alpha\) such that the integral is of the form \(\frac{1}{r} \ln \left[\tan \left(\frac{x + \alpha}{2}\right)\right]\), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{dx}{a \cos x + b \sin x} \] ...
Promotional Banner

Topper's Solved these Questions

  • HEIGHT & DISTANCE

    NDA PREVIOUS YEARS|Exercise Math|45 Videos
  • MATRICES & DETERMINANTS

    NDA PREVIOUS YEARS|Exercise MQS|240 Videos

Similar Questions

Explore conceptually related problems

The integral int (dx)/(a cos x + b sin x) is of the form (1)/(r) " In" [tan ((x + alpha)/(2))] What is r equal to ?

The integral int (dx)/(acosx+bsinx) is of the form (1)/(r )ln[tan((x+alpha)/(2))] What is alpha equal to ?

The integral int (dx)/(acosx+bsinx) is of the form (1)/(r )ln[tan((x+alpha)/(2))] What is r equal to ?

int(dx)/(cos x cos(x+alpha))

Integrate int(x-sin x)/(1-cos x)dx

int(dx)/(cos x*cos(x+alpha))

int tan(x-alpha).tan(x+alpha).tan 2x dx is equal to

int(dx)/(sin x*sin(x+alpha)) is equal to

Integrate : (d) int ( sin 5x - sin 5alpha) dx .

Integrate : int(1)/(sin x*tan x)dx