Home
Class 12
MATHS
int(e^(sinx))/(cos^2x)(xcos^3x-sinx) dx...

`int(e^(sinx))/(cos^2x)(xcos^3x-sinx) dx`

A

`(x + sec x) e^(sin x) + c`

B

`(x - sec x) e^(sin x) + c`

C

`(x + tan x) e^(sin x) + c`

D

`(x - tan x)e^(sin x) + c`

Text Solution

Verified by Experts

The correct Answer is:
B

Let us differentiate all the options one by one to get the expression in the question whose integral is to be found.
Here `xe^(sin x)` is the common term in all the options. So let us differentiate it first
Let `l = xe^(sin x)`
`rArr (dl)/(dx) = e^(sin x) [ x cos x + 1]`
`rArr (dl)/(dx) = (e^(sin x))/(cos^(2)x) [x cos^(3) x + cos^(2) x]`
Let `m = sec xe^(sin x)`
`rArr (dm)/(dx) = sec xe^(sin x). cos x + e^(sin x) sec x tan x`
`rArr (dm)/(dx) = e^(sin x) [1 + (sin x)/(cos^(2) x)]`
`rArr (dm)/(dx) = (e^(sin x))/(cos^(2)x) [cos^(2) x + sin x]`
Differentiation of option (a) is
`= (e^(sin x))/(cos^(2) x) [x cos^(3) x + cos^(2) x + cos^(2) x + sin x]`
`= (e^(sin x))/(cos^(2)x) [x cos^(3) x + 2 cos^(2) x + sin x]`
Differentiation of option (b) is
`= (e^(sin x))/(cos^(2) x) [x cos^(3) x + cos^(2) x - cos^(2) x - sin x]`
`= (e^(sin x))/(cos^(2)x) [x cos^(3) x - sin x]`
`:.` Option (b) is correct
Promotional Banner

Topper's Solved these Questions

  • HEIGHT & DISTANCE

    NDA PREVIOUS YEARS|Exercise Math|45 Videos
  • MATRICES & DETERMINANTS

    NDA PREVIOUS YEARS|Exercise MQS|240 Videos

Similar Questions

Explore conceptually related problems

Evaluate inte^sinx/cos^2x(xcos^3x-sinx)dx

int(sinx)/(1+cos^2x)dx

int(cos2x)/(cosx-sinx)dx=

int(sinx)/(1+cos^2x)dx=

int(sinx)/(cos^(2)x)dx=

int(sinx)/(3+4cos^(2)x)dx

Evaluate: int((3sinx-2)cosx)/(5-cos^2x-4sinx)\ dx

int(sinx)/((1+cos^(2)x))dx

int (sinx)/(1-cos x)dx