Home
Class 12
MATHS
What is int tan^(-1) (sec x + tan x) dx ...

What is `int tan^(-1) (sec x + tan x) dx` equal to ?

A

`(pix)/(4) + (x^(2))/(4) + c`

B

`(pix)/(2) + (x^(2))/(4) + c`

C

`(pix)/(4) + (pix^(2))/(4) + c`

D

`(pix)/(4) - (x^(2))/(4) + c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan^{-1}(\sec x + \tan x) \, dx \), we can follow these steps: ### Step 1: Simplify the Argument of the Inverse Tangent We know that: \[ \sec x + \tan x = \tan\left(\frac{x}{2} + \frac{\pi}{4}\right) \] Thus, we can rewrite the integral: \[ \tan^{-1}(\sec x + \tan x) = \tan^{-1}\left(\tan\left(\frac{x}{2} + \frac{\pi}{4}\right)\right) \] ### Step 2: Apply the Inverse Tangent Function Using the property of the inverse tangent function, we have: \[ \tan^{-1}(\tan(\theta)) = \theta \quad \text{(for appropriate } \theta\text{)} \] So, we can simplify: \[ \tan^{-1}(\sec x + \tan x) = \frac{x}{2} + \frac{\pi}{4} \] ### Step 3: Substitute Back into the Integral Now, we substitute this back into the integral: \[ \int \tan^{-1}(\sec x + \tan x) \, dx = \int \left(\frac{x}{2} + \frac{\pi}{4}\right) \, dx \] ### Step 4: Integrate the Expression Now, we can integrate term by term: \[ \int \left(\frac{x}{2} + \frac{\pi}{4}\right) \, dx = \int \frac{x}{2} \, dx + \int \frac{\pi}{4} \, dx \] Calculating these integrals: \[ \int \frac{x}{2} \, dx = \frac{1}{2} \cdot \frac{x^2}{2} = \frac{x^2}{4} \] \[ \int \frac{\pi}{4} \, dx = \frac{\pi}{4} x \] ### Step 5: Combine the Results Combining the results from the integrations, we have: \[ \int \tan^{-1}(\sec x + \tan x) \, dx = \frac{x^2}{4} + \frac{\pi}{4} x + C \] where \( C \) is the constant of integration. ### Final Result Thus, the final result is: \[ \int \tan^{-1}(\sec x + \tan x) \, dx = \frac{x^2}{4} + \frac{\pi}{4} x + C \]

To solve the integral \( \int \tan^{-1}(\sec x + \tan x) \, dx \), we can follow these steps: ### Step 1: Simplify the Argument of the Inverse Tangent We know that: \[ \sec x + \tan x = \tan\left(\frac{x}{2} + \frac{\pi}{4}\right) \] Thus, we can rewrite the integral: ...
Promotional Banner

Topper's Solved these Questions

  • HEIGHT & DISTANCE

    NDA PREVIOUS YEARS|Exercise Math|45 Videos
  • MATRICES & DETERMINANTS

    NDA PREVIOUS YEARS|Exercise MQS|240 Videos

Similar Questions

Explore conceptually related problems

int e^(x) sec x (1 + tan x) dx is equal to

int cot^(-1)(sec x-tan x)dx=

What is int (dx)/(sec x + tan x) equal to ?

I= int(1)/(sec x-tan x)dx

int(secx- tan x)/(sec x+ tan x) dx

int(cot x-tan x)dx is equal to

What is int tan^(2) x sec^(4) x dx equal to ?

int e^(x)sec x(1+tan x)dx