Home
Class 12
MATHS
What is int(dx)/(2^(x) -1) equal to ?...

What is `int(dx)/(2^(x) -1)` equal to ?

A

`ln (2^(x) -1) + c`

B

`(ln(1 -2^(-x)))/(ln 2) + c`

C

`(ln (2^(-x) -1))/(2ln 2) + c`

D

`(ln(1 + 2^(-x)))/(ln 2) + c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{2^x - 1} \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{2^x - 1} \] We can rewrite the denominator: \[ I = \int \frac{dx}{2^x - 1} = \int \frac{dx}{2^x (1 - \frac{1}{2^x})} \] ### Step 2: Make a Substitution Let \( t = 1 - 2^{-x} \). Then, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = \frac{d}{dx}(1 - 2^{-x}) = 0 + 2^{-x} \ln(2) = \frac{\ln(2)}{2^x} \] Thus, we can express \( dx \) in terms of \( dt \): \[ dx = \frac{2^x}{\ln(2)} dt \] ### Step 3: Substitute in the Integral Now substitute \( dx \) and \( 2^x \) in terms of \( t \): \[ 2^x = \frac{1}{1 - t} \quad \text{(since \( t = 1 - 2^{-x} \))} \] Substituting these into the integral gives: \[ I = \int \frac{\frac{2^x}{\ln(2)} dt}{\frac{1}{1 - t} - 1} = \int \frac{\frac{1}{(1 - t) \ln(2)}}{t} dt \] ### Step 4: Simplify the Integral This simplifies to: \[ I = \frac{1}{\ln(2)} \int \frac{dt}{t(1 - t)} \] ### Step 5: Partial Fraction Decomposition We can use partial fractions: \[ \frac{1}{t(1 - t)} = \frac{1}{t} + \frac{1}{1 - t} \] Thus, we have: \[ I = \frac{1}{\ln(2)} \left( \int \frac{1}{t} dt + \int \frac{1}{1 - t} dt \right) \] ### Step 6: Integrate Integrating gives: \[ I = \frac{1}{\ln(2)} \left( \ln |t| - \ln |1 - t| + C \right) \] Combining the logarithms: \[ I = \frac{1}{\ln(2)} \ln \left| \frac{t}{1 - t} \right| + C \] ### Step 7: Substitute Back Substituting back \( t = 1 - 2^{-x} \): \[ I = \frac{1}{\ln(2)} \ln \left| \frac{1 - 2^{-x}}{2^{-x}} \right| + C \] This simplifies to: \[ I = \frac{1}{\ln(2)} \ln \left| \frac{2^x - 1}{2^x} \right| + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{dx}{2^x - 1} = \frac{1}{\ln(2)} \ln \left| \frac{2^x - 1}{2^x} \right| + C \]

To solve the integral \( \int \frac{dx}{2^x - 1} \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{2^x - 1} \] We can rewrite the denominator: ...
Promotional Banner

Topper's Solved these Questions

  • HEIGHT & DISTANCE

    NDA PREVIOUS YEARS|Exercise Math|45 Videos
  • MATRICES & DETERMINANTS

    NDA PREVIOUS YEARS|Exercise MQS|240 Videos

Similar Questions

Explore conceptually related problems

What is int(dx)/(2x^(2)-2x+1) equal to ?

What is int(dx)/(x(x^(2)+1)) equal to ?

What is int(e^(x)+1)^(-1) dx equal to ?

What is int(e^(-x)+1)^(-1)dx equal to ?

int(dx)/(x(x^(2)+1)) is equal to

What is int_(1)^(x) ln x dx equal to ?

What is int(x^(4)+1)/(x^(2)+1)dx equal to ?

What is int_(-1)^(1) x|x| dx equal to ?

What is int (e^(x) + 1)^(-1) dx equal to?