Home
Class 11
MATHS
Given a(i)^(2) + b(i)^(2) + c(i)^(2) = 1...

Given `a_(i)^(2) + b_(i)^(2) + c_(i)^(2) = 1, i = 1, 2, 3 and a_(i) a_(j) + b_(i) b_(j) + c_(i) c_(j) = 0 (i !=j, i, j =1, 2, 3)`, then the value of the determinant
`|(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))|`, is

A

`(1)/(2)`

B

0

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given the conditions on the vectors defined by \( a_i, b_i, c_i \). ### Step-by-Step Solution: 1. **Understanding the Conditions**: We have three conditions: - \( a_i^2 + b_i^2 + c_i^2 = 1 \) for \( i = 1, 2, 3 \) - \( a_i a_j + b_i b_j + c_i c_j = 0 \) for \( i \neq j \) These conditions imply that the vectors \( \mathbf{P} = (a_1, b_1, c_1) \), \( \mathbf{Q} = (a_2, b_2, c_2) \), and \( \mathbf{R} = (a_3, b_3, c_3) \) are unit vectors (length 1) and are mutually orthogonal. 2. **Forming the Determinant**: We need to evaluate the determinant: \[ D = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \] 3. **Properties of Orthogonal Vectors**: Since the vectors \( \mathbf{P}, \mathbf{Q}, \mathbf{R} \) are orthogonal and of unit length, the determinant of the matrix formed by these vectors as columns will be equal to the volume of the parallelepiped formed by these vectors. 4. **Calculating the Determinant**: The volume of the parallelepiped formed by three orthogonal unit vectors is given by: \[ \text{Volume} = |\mathbf{P} \cdot (\mathbf{Q} \times \mathbf{R})| = 1 \] Hence, the determinant \( D \) is equal to 1. 5. **Conclusion**: Therefore, the value of the determinant is: \[ D = 1 \]

To solve the problem, we need to evaluate the determinant given the conditions on the vectors defined by \( a_i, b_i, c_i \). ### Step-by-Step Solution: 1. **Understanding the Conditions**: We have three conditions: - \( a_i^2 + b_i^2 + c_i^2 = 1 \) for \( i = 1, 2, 3 \) - \( a_i a_j + b_i b_j + c_i c_j = 0 \) for \( i \neq j \) ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|6 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA|Exercise Exercise|94 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • CONIC SECTIONS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|1 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

Let a_i^2+b_i^2+c_i^2=1 (for i=1,2,3) and a_ia_j+b_ib_j+c_ic_j=0 (i != j;i,j=1,2,3). Then the absolute value of determinant |(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)| (A) 1/2 (B) 0 (C) 1 (D) 2

if quad /_=[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

if Delta=det[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

" if " x_(i) =a_(i) b_(i) C_(i), i= 1,2,3 are three- digit positive integer such that each x_(i) is a mulptiple of 19 then prove that det {{:(a_(1),,a_(2),,a_(3)),(b_(1),,b_(2),,b_(3)),(c_(1),,c_(2),,c_(3)):}} is divisible by 19.

If a_(1)^(2)+a_(2)^(2)+a_(3)^(2)=1, b_(1)^(2)+b_(2)^(2)+b_(3)^(2)=4, c_(1)^(2)+c_(2)^(2)+c_3^(2)=9, a_(1)b_(1)+a_(2)b_(2)+a_(3)b_(3)=0, a_(1)c_(1)+a_(2)c_(2)+a_(3)c_(3)=0, b_(1)c_(1)+b_(2)c_(2)+b_(3)c_(3)=0 and A[(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))] , then |A|^(4) is equal to

Consider the system of equations a_(1) x + b_(1) y + c_(1) z = 0 a_(2) x + b_(2) y + c_(2) z = 0 a_(3) x + b_(3) y + c_(3) z = 0 If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =0 , then the system has

Let A=[a_(ij)]_(3xx3) be a matrix such that a_(ij)=(i+2j)/(2) where i,j in [1, 3] and i,j inN . If C_(ij) be a cofactor of a_(ij), then the value of a_(11)C_(21)+a_(12)C_(22)+a_(13)C_(23)+a_(21)C_(31)+a_(22)C_(32)+a_(33)C_(33)+a_(31)C_(11)+a_(32)C_(12)+a_(33)C_(13) is equal to

The determinant |(b_(1)+c_(1),c_(1)+a_(1),a_(1)+b_(1)),(b_(2)+c_(2),c_(2)+a_(2),a_(2)+b_(2)),(b_(3)+c_(3),c_(3)+a_(3),a_(3)+b_(3))|

if sum_(i=1)^(n)a_(i)=0, where |a_(i)|=1,AA i then the value of sum_(1

OBJECTIVE RD SHARMA-DETERMINANTS-Section I - Solved Mcqs
  1. If |(x^(n),x^(n+2),x^(n+3)),(y^(n),y^(n+2),y^(n+3)),(z^(n),z^(n+2),z^(...

    Text Solution

    |

  2. If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(...

    Text Solution

    |

  3. Given a(i)^(2) + b(i)^(2) + c(i)^(2) = 1, i = 1, 2, 3 and a(i) a(j) + ...

    Text Solution

    |

  4. If alpha,beta and gamma are such that alpha+beta+gamma=0, then |(1,cos...

    Text Solution

    |

  5. The value of the determinant |(cos alpha, -sin alpha,1),(sin alpha,cos...

    Text Solution

    |

  6. If Delta = |(cos alpha,- sin alpha,1),(sin alpha,cos alpha,1),(cos (al...

    Text Solution

    |

  7. Let D(r) = |(a,2^(r),2^(16) -1),(b,3(4^(r)),2(14^(16) -1)),(c,7(8^(r))...

    Text Solution

    |

  8. If Delta = |(cos (alpha(1) - beta(1)),cos (alpha(1) - beta(2)),cos (al...

    Text Solution

    |

  9. The determinant |(y^(2),-xy,x^(2)),(a,b,c),(a',b',c')| is equal to

    Text Solution

    |

  10. If |[p,q-y,r-z],[p-x,q,r-z],[p-x,q-y,r]|=0 find the value of p/x+q/y+r...

    Text Solution

    |

  11. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  12. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  13. Let A = [(1,sin theta,1),(- sin theta,1,sin theta),(-1,-sin theta,1)],...

    Text Solution

    |

  14. Let |(x,2,x),(x^(2),x,6),(x,x,6)| = ax^(4) + bx^(3) + cx^(2) + dx + e ...

    Text Solution

    |

  15. If Delta(1) = |(1,1,1),(a,b,c),(a^(2),b^(2),c^(2))|, Delta(2) = |(1,bc...

    Text Solution

    |

  16. If Dk=|1nn2k n^2+n+2n^2+n2k-1n^2n^2+n+2|a n d sum(k=1)^n Dk=48 ,t h e...

    Text Solution

    |

  17. Let |(1 +x,x,x^(2)),(x,1 +x,x^(2)),(x^(2),x,1 +x)| = ax^(5) + bx^(4) +...

    Text Solution

    |

  18. If A = int(1)^(sintheta) (t)/(1 + r^(2)) dt and B = int(1)^("cosec"the...

    Text Solution

    |

  19. If I(n) = |(1,k,k),(2n,k^(2) + k + 1,k^(2) + k),(2n -1,k^(2) ,k^(2) + ...

    Text Solution

    |

  20. If x is a positive integer, then |(x!,(x +1)!,(x +2)!),((x +1)!,(x +2)...

    Text Solution

    |