Home
Class 11
MATHS
The value of the determinant Delta = |...

The value of the determinant
`Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)|`, is

A

`cos^(2) alpha`

B

`sin^(2) alpha`

C

`sin (alpha - beta)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ \Delta = \begin{vmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) & \cos(2\beta) \\ \sin \alpha & \cos \alpha & \sin \beta \\ -\cos \alpha & \sin \alpha & -\cos \beta \end{vmatrix} \] we will perform row operations to simplify the determinant. ### Step 1: Apply Row Operations We will perform the following row operations: - Replace \( R_1 \) with \( R_1 + \sin \beta R_2 + \cos \beta R_3 \). This gives us: \[ R_1 = \begin{pmatrix} \cos(\alpha + \beta) + \sin \beta \sin \alpha - \cos \beta \cos \alpha & -\sin(\alpha + \beta) + \sin \beta \cos \alpha + \cos \beta \sin \alpha & \cos(2\beta) + \sin \beta \sin \beta - \cos \beta \cos \beta \end{pmatrix} \] ### Step 2: Simplify the First Row Now we simplify the first row: 1. The first element becomes: \[ \cos(\alpha + \beta) + \sin \beta \sin \alpha - \cos \beta \cos \alpha = \cos(\alpha + \beta) + \sin \beta \sin \alpha - \cos \beta \cos \alpha \] Using the cosine addition formula, this simplifies to \( 0 \). 2. The second element becomes: \[ -\sin(\alpha + \beta) + \sin \beta \cos \alpha + \cos \beta \sin \alpha = -\sin(\alpha + \beta) + \sin(\alpha + \beta) = 0 \] 3. The third element becomes: \[ \cos(2\beta) + \sin^2 \beta - \cos^2 \beta = \cos(2\beta) + \sin^2 \beta - \cos^2 \beta = 0 \] Thus, the first row becomes: \[ R_1 = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \] ### Step 3: Evaluate the Determinant Since the first row of the determinant is now all zeros, the value of the determinant is: \[ \Delta = 0 \] ### Final Answer The value of the determinant \( \Delta \) is \( 0 \). ---

To find the value of the determinant \[ \Delta = \begin{vmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) & \cos(2\beta) \\ \sin \alpha & \cos \alpha & \sin \beta \\ -\cos \alpha & \sin \alpha & -\cos \beta \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|6 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA|Exercise Exercise|94 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • CONIC SECTIONS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|1 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

det[[ The value of ,cos(alpha+beta),-sin(alpha+beta),cos2 betasin alpha,cos beta,sin beta-cos alpha,sin alpha,cos beta]] is

(cos alpha + cos beta)/( sin alpha - sin beta) + (sin alpha + sin beta)/( cos alpha - cos beta ) =

Evaluate ,,,|cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha,cos beta,sin alpha sin beta,cos alpha]|

det[[cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha cos beta,sin alpha sin beta,cos alpha]]

The maximum value of determinant |{:(cos(alpha+beta),sin alpha,-cos alpha),(-sin(alpha+beta),cos alpha, sin alpha),(cos 2beta,sin beta, cos beta):}| is ___________

Find the value of, cos alpha cos beta, cos alpha sin beta, -no alpha-sin beta, cos beta, 0 sin alpha cos beta, sin alpha sin beta, cos alpha] |

Evaluate: quad =|cos alpha cos beta cos alpha sin beta-sin alpha-sin beta cos beta0sin alpha cos beta sin alpha sin beta cos alpha|

A = [[0, sin alpha, sin alpha sin beta-sin alpha, 0, cos alpha cos beta-sin alpha sin beta, -cos alpha cos beta, 0]]

If Delta = |(cos alpha,- sin alpha,1),(sin alpha,cos alpha,1),(cos (alpha + beta),- sin (alpha + beta),1)| , then

OBJECTIVE RD SHARMA-DETERMINANTS-Section I - Solved Mcqs
  1. If the system of linear equation x + 4ay + ax = 0, x + 3b + bz = 0...

    Text Solution

    |

  2. If alpha is a non-real cube root of -2, then the value of |(1,2 alpha,...

    Text Solution

    |

  3. The value of the determinant Delta = |(cos (alpha + beta),- sin (alp...

    Text Solution

    |

  4. If 1.omega, omega^2 are the roots of unity, then Delta=|(1,omega^n,ome...

    Text Solution

    |

  5. If omega is a non-real cube root of unity, then Delta = |(a(1) + b(1) ...

    Text Solution

    |

  6. If Delta(r) = |(1,r,2^(r)),(2,n,n^(2)),(n,(n(n1))/(2),2^(n+1))|, then ...

    Text Solution

    |

  7. If Delta(r) = |(2^(r -1),((r +1)!)/((1 + 1//r)),2r),(a,b,c),(2^(n) -1,...

    Text Solution

    |

  8. The value of the determinant Delta = |(1 + a(1) b(1),1 + a(1) b(2),1 +...

    Text Solution

    |

  9. If a, b, c are complex numbers, then the determinant Delta = |(0,-b,...

    Text Solution

    |

  10. The value of the determinant Delta = |(sin 2 alpha,sin (alpha + beta),...

    Text Solution

    |

  11. If A, B and C denote the angles of a triangle, then Delta = |(-1,cos...

    Text Solution

    |

  12. If X, Y and Z are positive numbers such that Y and Z have respectively...

    Text Solution

    |

  13. If a gt 0 and discriminant of ax^(2) + 2bx + c is negative, then Del...

    Text Solution

    |

  14. If C = 2 cos theta, then the value of the determinant Delta = |(C,1,0)...

    Text Solution

    |

  15. If x^a y^b=e^m , x^c y^d=e^n ,Delta1=|(m,b),(n,d)|,and Delta2 =|(a,m),...

    Text Solution

    |

  16. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  17. In a Delta ABC " if " |(1,a,b),(1,c,a),(1,b,c)| =0, then sin^(2) A + s...

    Text Solution

    |

  18. If omega is a complex cube root of unity, then a root of the equation ...

    Text Solution

    |

  19. The value of Delta = |(1,1 + ac,1 +bc),(1,1 + ad,1 + bd),(1 ,1 + ae,1 ...

    Text Solution

    |

  20. If the system of equations x+a y=0,a z+y=0 and a x+z=0 has infinite so...

    Text Solution

    |