Home
Class 11
MATHS
If alpha + beta + gamma = pi, then the v...

If `alpha + beta + gamma = pi`, then the value of the determinant
`|(e^(2i alpha),e^(-i gamma),e^(-i beta)),(e^(-i gamma),e^(2i beta),e^(-i alpha)),(e^(-i beta),e^(-i alpha),e^(2i gamma))|`, is

A

4

B

`-4`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant problem, we need to evaluate the determinant: \[ D = \begin{vmatrix} e^{2i\alpha} & e^{-i\gamma} & e^{-i\beta} \\ e^{-i\gamma} & e^{2i\beta} & e^{-i\alpha} \\ e^{-i\beta} & e^{-i\alpha} & e^{2i\gamma} \end{vmatrix} \] Given that \(\alpha + \beta + \gamma = \pi\), we can use this information to simplify the determinant. ### Step 1: Substitute for \(e^{-i\gamma}\) and \(e^{-i\beta}\) Using the identity \(e^{-i\gamma} = e^{-i(\pi - \alpha - \beta)} = e^{i(\alpha + \beta)}\) and \(e^{-i\beta} = e^{-i(\pi - \alpha - \gamma)} = e^{i(\alpha + \gamma)}\), we can rewrite the determinant: \[ D = \begin{vmatrix} e^{2i\alpha} & e^{i(\alpha + \beta)} & e^{i(\alpha + \gamma)} \\ e^{i(\alpha + \beta)} & e^{2i\beta} & e^{i(\beta + \gamma)} \\ e^{i(\alpha + \gamma)} & e^{i(\beta + \gamma)} & e^{2i\gamma} \end{vmatrix} \] ### Step 2: Factor out common terms Next, we can factor out \(e^{i\alpha}\), \(e^{i\beta}\), and \(e^{i\gamma}\) from each row: \[ D = e^{i\alpha + i\beta + i\gamma} \begin{vmatrix} e^{i\alpha} & 1 & 1 \\ 1 & e^{i\beta} & 1 \\ 1 & 1 & e^{i\gamma} \end{vmatrix} \] Since \(\alpha + \beta + \gamma = \pi\), we have \(e^{i\alpha + i\beta + i\gamma} = e^{i\pi} = -1\). ### Step 3: Evaluate the remaining determinant Now we need to evaluate the determinant: \[ D' = \begin{vmatrix} e^{i\alpha} & 1 & 1 \\ 1 & e^{i\beta} & 1 \\ 1 & 1 & e^{i\gamma} \end{vmatrix} \] Using the determinant formula for a \(3 \times 3\) matrix, we can compute \(D'\): \[ D' = e^{i\alpha}(e^{i\beta}e^{i\gamma} - 1) - 1(e^{i\beta} - 1) + 1(1 - e^{i\alpha}) \] This simplifies to: \[ D' = e^{i\alpha}e^{i\beta}e^{i\gamma} - e^{i\alpha} - e^{i\beta} + 1 + 1 - e^{i\alpha} \] ### Step 4: Substitute back and simplify Substituting back into \(D\): \[ D = -1 \cdot D' = -\left(e^{i\alpha}e^{i\beta}e^{i\gamma} - e^{i\alpha} - e^{i\beta} + 2 - e^{i\alpha}\right) \] ### Step 5: Final evaluation We can evaluate \(D\) further. Since \(e^{i\alpha}e^{i\beta}e^{i\gamma} = e^{i(\alpha + \beta + \gamma)} = e^{i\pi} = -1\): \[ D = -(-1 - e^{i\alpha} - e^{i\beta} + 2) \] This leads us to the final value of the determinant: \[ D = -1 + e^{i\alpha} + e^{i\beta} - 2 = -1 - 1 = -2 \] Thus, the value of the determinant is: \[ \boxed{-4} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|6 Videos
  • CONIC SECTIONS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|1 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are cube roots of unity, then the value of |(e^(alpha),e^(2alpha),(e^(3alpha)-1)),(e^(beta),e^(2beta),(e^(3beta)-1)),(e^(gamma),e^(2gamma),(e^(3gamma)-1))|=

If A , B ,C are angles of a triangles, then the value of |[e^(2i A),e^(-i C),e^(-i B)],[e^(-i C),e^(2i B),e^(-i A)],[e^(-i B),e^(-i A),e^(2i C)]| is 1 b. -1 c. -2 d. -4

If alpha,beta,gamma are the roots of px^(2)+qx^(2)+r=0 then the value of the determinant det[[alpha beta,beta gamma,gamma alphabeta gamma,gamma alpha,alpha betagamma alpha,alpha beta,beta gamma]] is p b.q c.0 d.r

The value of the determinant : |(1-alpha,alpha-alpha^(2),alpha^(2)),(1-beta,beta-beta^(2),beta^(2)),(1-gamma,gamma-gamma^(2),gamma^(2))| is equal to :

If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|=

OBJECTIVE RD SHARMA-DETERMINANTS-Exercise
  1. Using the factor theorem it is found that a+b , b+ca n dc+a are three ...

    Text Solution

    |

  2. The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)|, is

    Text Solution

    |

  3. If alpha + beta + gamma = pi, then the value of the determinant |(e^...

    Text Solution

    |

  4. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  5. The repeated factor of the determinant |(y +z,x,y),(z +x,z,x),(x +y,...

    Text Solution

    |

  6. The value of the determinant Delta = |((1 - a(1)^(3) b(1)^(3))/(1 - ...

    Text Solution

    |

  7. The determinant Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha...

    Text Solution

    |

  8. Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

    Text Solution

    |

  9. If |(1 +ax,1 +bx,1 + bx),(1 +a(1) x,1 +b(1) x,1 + c(1) x),(1 + a(2) x,...

    Text Solution

    |

  10. If a != 0, b!= 0, c!= 0, then |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| is ...

    Text Solution

    |

  11. If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0, then Delta = |(1 +a,1,1),(1,...

    Text Solution

    |

  12. If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1...

    Text Solution

    |

  13. In a Delta ABC, a, b, c are sides and A, B, C are angles opposite to t...

    Text Solution

    |

  14. If |(-12,0,lamda),(0,2,-1),(2,1,15)| = -360, then the value of lamda i...

    Text Solution

    |

  15. If a(i), i=1,2,…..,9 are perfect odd squares, then |{:(a(1),a(2),a(3))...

    Text Solution

    |

  16. If the maximum and minimum values of the determinant |(1 + sin^(2)x...

    Text Solution

    |

  17. If [x] denote the greatest integer less than or equal to x then in ord...

    Text Solution

    |

  18. If a, b gt 0 and Delta (x)= |(x,a,a),(b,x,a),(b,b,x)|, then

    Text Solution

    |

  19. Let f(x) = ax^(2) + bx + c, a, b, c, in R and equation f(x) - x = 0 ha...

    Text Solution

    |

  20. If g(x) = |(f(x + c),f(x + 2c),f(x + 3c)),(f(c),f(2c),f(3c)),(f(c),f'(...

    Text Solution

    |