Home
Class 11
MATHS
The value of the determinant Delta = |...

The value of the determinant
`Delta = |((1 - a_(1)^(3) b_(1)^(3))/(1 - a_(1) b_(1)),(1 - a_(1)^(3) b_(2)^(3))/(1 - a_(1) b_(2)),(1 - a_(1)^(3) b_(3)^(3))/(1 - a_(1) b_(3))),((1 - a_(2)^(3) b_(1)^(3))/(1 - a_(2) b_(1)),(1 - a_(2)^(3) b_(2)^(3))/(1 - a_(2) b_(2)),(1 - a_(2)^(3) b_(3)^(3))/(1 - a_(2) b_(3))),((1 - a_(3)^(3) b_(1)^(3))/(1 - a_(3) b_(1)),(1 - a_(3)^(3) b_(2)^(3))/(1 - a_(3) b_(2)),(1 - a_(3)^(3) b_(3)^(3))/(1 - a_(3) b_(3)))|`, is

A

0

B

dependent only on `a_(1), a_(2), a_(3)`

C

dependent only `b_(1), b_(2), b_(3)`

D

dependent on `a_(1), a_(2), a_(3) b_(1), b_(2), b_(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ \Delta = \begin{vmatrix} \frac{1 - a_1^3 b_1^3}{1 - a_1 b_1} & \frac{1 - a_1^3 b_2^3}{1 - a_1 b_2} & \frac{1 - a_1^3 b_3^3}{1 - a_1 b_3} \\ \frac{1 - a_2^3 b_1^3}{1 - a_2 b_1} & \frac{1 - a_2^3 b_2^3}{1 - a_2 b_2} & \frac{1 - a_2^3 b_3^3}{1 - a_2 b_3} \\ \frac{1 - a_3^3 b_1^3}{1 - a_3 b_1} & \frac{1 - a_3^3 b_2^3}{1 - a_3 b_2} & \frac{1 - a_3^3 b_3^3}{1 - a_3 b_3} \end{vmatrix} \] we can simplify the elements of the determinant using the identity for the difference of cubes. ### Step 1: Simplify each element of the determinant Each element in the determinant can be rewritten using the formula for the difference of cubes: \[ 1 - a^3b^3 = (1 - ab)(1 + ab + (ab)^2) \] Thus, we can rewrite each element as follows: \[ \frac{1 - a_i^3 b_j^3}{1 - a_i b_j} = 1 + a_i b_j + (a_i b_j)^2 \] So, the determinant simplifies to: \[ \Delta = \begin{vmatrix} 1 + a_1 b_1 + (a_1 b_1)^2 & 1 + a_1 b_2 + (a_1 b_2)^2 & 1 + a_1 b_3 + (a_1 b_3)^2 \\ 1 + a_2 b_1 + (a_2 b_1)^2 & 1 + a_2 b_2 + (a_2 b_2)^2 & 1 + a_2 b_3 + (a_2 b_3)^2 \\ 1 + a_3 b_1 + (a_3 b_1)^2 & 1 + a_3 b_2 + (a_3 b_2)^2 & 1 + a_3 b_3 + (a_3 b_3)^2 \end{vmatrix} \] ### Step 2: Identify common patterns Notice that each column can be expressed in a similar form. This suggests that the columns may be linearly dependent. ### Step 3: Check for linear dependence To check for linear dependence, we can observe that if we subtract the first column from the second and third columns, we will see that the resulting columns will have a similar structure. If we perform the operation \( C_2 - C_1 \) and \( C_3 - C_1 \), we will find that the new columns are linear combinations of the original columns. ### Step 4: Conclude the determinant value Since the determinant of a matrix with linearly dependent columns is zero, we conclude that: \[ \Delta = 0 \] ### Final Answer Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|6 Videos
  • CONIC SECTIONS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|1 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant Delta = |(1 + a_(1) b_(1),1 + a_(1) b_(2),1 + a_(1) b_(3)),(1 + a_(2) b_(1),1 + a_(2) b_(2),1 + a_(2) b_(3)),(1 + a_(3) b_(1) ,1 + a_(3) b_(2),1 + a_(3) b_(3))| , is

the value of the determinant |{:((a_(1)-b_(1))^(2),,(a_(1)-b_(2))^(2),,(a_(1)-b_(3))^(2),,(a_(1)-b_(4))^(2)),((a_(2)-b_(1))^(2),,(a_(2)-b_(2))^(2) ,,(a_(2)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(3)-b_(1))^(2),,(a_(3)-b_(2))^(2),,(a_(3)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(4)-b_(1))^(2),,(a_(4)-b_(2))^(2),,(a_(4)-b_(3))^(2),,(a_(4)-b_(4))^(2)):}| is

If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5 , then the value of Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))| is

The value of |(a_(1) x_(1) + b_(1) y_(1),a_(1) x_(2) + b_(1) y_(2),a_(1) x_(3) + b_(1) y_(3)),(a_(2) x_(1) +b_(2) y_(1),a_(2) x_(2) + b_(2) y_(2),a_(2) x_(3) + b_(2) y_(3)),(a_(3) x_(1) + b_(3) y_(1),a_(3) x_(2) + b_(3) y_(2),a_(3) x_(3) + b_(3) y_(3))| , is

prove that (1)/((a-a_(1))^(2)),(1)/(a-a_(1)),(1)/(a_(1))(1)/((a-a_(2))^(2)),(1)/(a-a_(2)),(1)/(a_(2))(1)/((a-a_(3))^(2)),(1)/(a-a_(3)),(1)/(a_(3))]|=(-a^(2)(a_(1)-a_(2))(a_(2)-a_(3))(a_(3)-a_(1)))/(a_(1)a_(2)a_(3)(a-a_(1))^(2)(a-a_(2))^(2)(a-a_(3))^(2))

det[[2a_(1)b_(1),a_(1)b_(2)+a_(2)b_(1),a_(1)b_(3)+a_(3)b_(1)a_(1)b_(2)+a_(2)b_(1),2a_(2)b_(2),a_(2)b_(3)+a_(3)b_(2)a_(1)b_(3)+a_(3)b_(1),a_(3)b_(2)+a_(2)b_(3),2a_(3)b_(3)]]=

if quad /_=[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

If a_(1)<(28)^(1/3)-3

If (a_(2)a_(3))/(a_(1)a_(4))=(a_(2)+a_(3))/(a_(1)+a_(4))=3((a_(2)-a_(3))/(a_(1)-a_(4))) , then a_(1),a_(2),a_(3),a_(4) are in

OBJECTIVE RD SHARMA-DETERMINANTS-Exercise
  1. If alpha + beta + gamma = pi, then the value of the determinant |(e^...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. The repeated factor of the determinant |(y +z,x,y),(z +x,z,x),(x +y,...

    Text Solution

    |

  4. The value of the determinant Delta = |((1 - a(1)^(3) b(1)^(3))/(1 - ...

    Text Solution

    |

  5. The determinant Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha...

    Text Solution

    |

  6. Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

    Text Solution

    |

  7. If |(1 +ax,1 +bx,1 + bx),(1 +a(1) x,1 +b(1) x,1 + c(1) x),(1 + a(2) x,...

    Text Solution

    |

  8. If a != 0, b!= 0, c!= 0, then |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| is ...

    Text Solution

    |

  9. If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0, then Delta = |(1 +a,1,1),(1,...

    Text Solution

    |

  10. If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1...

    Text Solution

    |

  11. In a Delta ABC, a, b, c are sides and A, B, C are angles opposite to t...

    Text Solution

    |

  12. If |(-12,0,lamda),(0,2,-1),(2,1,15)| = -360, then the value of lamda i...

    Text Solution

    |

  13. If a(i), i=1,2,…..,9 are perfect odd squares, then |{:(a(1),a(2),a(3))...

    Text Solution

    |

  14. If the maximum and minimum values of the determinant |(1 + sin^(2)x...

    Text Solution

    |

  15. If [x] denote the greatest integer less than or equal to x then in ord...

    Text Solution

    |

  16. If a, b gt 0 and Delta (x)= |(x,a,a),(b,x,a),(b,b,x)|, then

    Text Solution

    |

  17. Let f(x) = ax^(2) + bx + c, a, b, c, in R and equation f(x) - x = 0 ha...

    Text Solution

    |

  18. If g(x) = |(f(x + c),f(x + 2c),f(x + 3c)),(f(c),f(2c),f(3c)),(f(c),f'(...

    Text Solution

    |

  19. If a^(2) + b^(2) + c^(2) = -2 and f(x) = |(1 + a^(2)x,(1 + b^(2))x,(1 ...

    Text Solution

    |

  20. Coefficient of x in f(x)=|(x,(1+sinx)^3,cosx),(1,log(1+x),2),(x^2,(1+x...

    Text Solution

    |