Home
Class 11
MATHS
If a^(2) + b^(2) + c^(2) = -2 and f(x) =...

If `a^(2) + b^(2) + c^(2) = -2 and f(x) = |(1 + a^(2)x,(1 + b^(2))x,(1 + c^(2)) x),((1 + a^(2))x,1 + b^(2)x,(1 + c^(2))x),((1 + a^(2)) x,(1 + b^(2))x,1 + c^(2)x)|`, then f(x) is a polynomial of degree

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to evaluate the determinant given in the function \( f(x) \) and determine its degree. ### Step 1: Write the determinant The function is given as: \[ f(x) = \begin{vmatrix} (1 + a^2)x & (1 + b^2)x & (1 + c^2)x \\ (1 + a^2)x & 1 + b^2x & (1 + c^2)x \\ (1 + a^2)x & (1 + b^2)x & 1 + c^2x \end{vmatrix} \] ### Step 2: Simplify the determinant We can simplify the determinant by performing column operations. We will add all three columns together to the first column: \[ C_1 \rightarrow C_1 + C_2 + C_3 \] This gives us: \[ f(x) = \begin{vmatrix} 3 & 1 + (a^2 + b^2 + c^2)x & (1 + c^2)x \\ 3 & 1 + (a^2 + b^2 + c^2)x & (1 + c^2)x \\ 3 & (1 + b^2)x & 1 + c^2x \end{vmatrix} \] ### Step 3: Substitute the given condition We know from the problem that \( a^2 + b^2 + c^2 = -2 \). Substituting this into our determinant: \[ f(x) = \begin{vmatrix} 3 & 1 - 2x & (1 + c^2)x \\ 3 & 1 - 2x & (1 + c^2)x \\ 3 & (1 + b^2)x & 1 + c^2x \end{vmatrix} \] ### Step 4: Further simplify the determinant Now, we can notice that the first two rows are identical. Therefore, the determinant simplifies to zero: \[ f(x) = 0 \] ### Step 5: Determine the polynomial degree Since \( f(x) = 0 \), it is a constant polynomial (specifically, the zero polynomial). The degree of the zero polynomial is defined as: \[ \text{Degree of } f(x) = -\infty \] ### Final Answer Thus, the degree of the polynomial \( f(x) \) is: \[ \text{Degree of } f(x) = -\infty \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|6 Videos
  • CONIC SECTIONS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|1 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

If a^(2)+b^(2)+c^(2) =-2 and f(x)= |{:(1+a^(2)x,(1+b^(2))x,(1+c^(2))x),((1+a^(2))x,1+b^(2)x,(1+c^(2))x),((1+a^(2))x,(1+b^(2))x,1+c^(2)x):}| the f(x) is a polynomial of degree

If a^2+b^2+c^2=-2a n df(x)= |a+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c^2)x(1+a^2)x(1+b^2)x1+c^2x| , then f(x) is a polynomial of degree 0 b. 1 c. 2 d. 3

If a^2+b^2+c^2=-2\ a b n df(x)=|1+a^xx(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c^2)x(1+a^2)x(1+b^2)x1+c^2x| , then f(x) is a polynomial of degree- a. 2 b. \ 3 c. \ 0 d. 1

prove that |{:((a-x)^(2),,(a-y)^(2),,(a-z)^(2)),((b-x)^(2),,(b-y)^(2),,(b-z)^(2)),((c-x)^(2),,(c-y)^(2),,(c-z)^(2)):}| |{:((1+ax)^(2),,(1+bx)^(2),,(1+cx)^(2)),((1+ay)^(2),,(1+by)^(2),,(1+cy)^(2)),((1+az)^(2),,(1+bx)^(2),,(1+cz)^(2)):}| =2 (b-c)(c-a)(a-b)xx (y-z) (z-x)(x-y)

Show : ( x^(a^2)/ x^( b^2 ) )^ (1/( a+b)) times ( x^(b^2)/ x^( c^2 )) ^ ( 1/( b+c )) times ( x^(c^2)/ x^( a^2 ) )^ (1/( c+a)) = 1

If the polynomial f(x) = |{:((1+x)^(a), (2+x)^(b),1),(1, (1 + x)^(a), (2 + x)^(b)),((2+x)^(b) , 1, (1+x)^(a)) :}| then the constant term of f(x) is

OBJECTIVE RD SHARMA-DETERMINANTS-Exercise
  1. If alpha + beta + gamma = pi, then the value of the determinant |(e^...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. The repeated factor of the determinant |(y +z,x,y),(z +x,z,x),(x +y,...

    Text Solution

    |

  4. The value of the determinant Delta = |((1 - a(1)^(3) b(1)^(3))/(1 - ...

    Text Solution

    |

  5. The determinant Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha...

    Text Solution

    |

  6. Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

    Text Solution

    |

  7. If |(1 +ax,1 +bx,1 + bx),(1 +a(1) x,1 +b(1) x,1 + c(1) x),(1 + a(2) x,...

    Text Solution

    |

  8. If a != 0, b!= 0, c!= 0, then |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| is ...

    Text Solution

    |

  9. If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0, then Delta = |(1 +a,1,1),(1,...

    Text Solution

    |

  10. If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1...

    Text Solution

    |

  11. In a Delta ABC, a, b, c are sides and A, B, C are angles opposite to t...

    Text Solution

    |

  12. If |(-12,0,lamda),(0,2,-1),(2,1,15)| = -360, then the value of lamda i...

    Text Solution

    |

  13. If a(i), i=1,2,…..,9 are perfect odd squares, then |{:(a(1),a(2),a(3))...

    Text Solution

    |

  14. If the maximum and minimum values of the determinant |(1 + sin^(2)x...

    Text Solution

    |

  15. If [x] denote the greatest integer less than or equal to x then in ord...

    Text Solution

    |

  16. If a, b gt 0 and Delta (x)= |(x,a,a),(b,x,a),(b,b,x)|, then

    Text Solution

    |

  17. Let f(x) = ax^(2) + bx + c, a, b, c, in R and equation f(x) - x = 0 ha...

    Text Solution

    |

  18. If g(x) = |(f(x + c),f(x + 2c),f(x + 3c)),(f(c),f(2c),f(3c)),(f(c),f'(...

    Text Solution

    |

  19. If a^(2) + b^(2) + c^(2) = -2 and f(x) = |(1 + a^(2)x,(1 + b^(2))x,(1 ...

    Text Solution

    |

  20. Coefficient of x in f(x)=|(x,(1+sinx)^3,cosx),(1,log(1+x),2),(x^2,(1+x...

    Text Solution

    |