Home
Class 11
MATHS
The roots of the equation |(3x^(2),x^(...

The roots of the equation
`|(3x^(2),x^(2) + x cos theta + cos^(2) theta ,x^(2) + x sin theta + sin^(2) theta),(x^(2) + x cos theta + cos^(2) theta,3 cos^(2) theta,1 + (sin 2 theta)/(2)),(x^(2) + x sin theta + sin^(2) theta,1 + (sin 2 theta)/(2),3 sin^(2) theta)| = 0`

A

`sin theta, cos theta`

B

`sin^(2) theta, cos^(2) theta`

C

`sin theta, cos^(2) theta`

D

`sin^(2) theta, cos theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant equation, we will follow these steps: ### Step 1: Write the determinant We start with the determinant given in the problem: \[ D = \begin{vmatrix} 3x^2 & x^2 + x \cos \theta + \cos^2 \theta & x^2 + x \sin \theta + \sin^2 \theta \\ x^2 + x \cos \theta + \cos^2 \theta & 3 \cos^2 \theta & 1 + \frac{\sin 2\theta}{2} \\ x^2 + x \sin \theta + \sin^2 \theta & 1 + \frac{\sin 2\theta}{2} & 3 \sin^2 \theta \end{vmatrix} \] ### Step 2: Factor out common terms We can factor out \(3\) from the first row: \[ D = 3 \begin{vmatrix} x^2 & \frac{1}{3}(x^2 + x \cos \theta + \cos^2 \theta) & \frac{1}{3}(x^2 + x \sin \theta + \sin^2 \theta) \\ \frac{1}{3}(x^2 + x \cos \theta + \cos^2 \theta) & \cos^2 \theta & \frac{1}{3}(1 + \frac{\sin 2\theta}{2}) \\ \frac{1}{3}(x^2 + x \sin \theta + \sin^2 \theta) & \frac{1}{3}(1 + \frac{\sin 2\theta}{2}) & \sin^2 \theta \end{vmatrix} \] ### Step 3: Simplify the determinant Next, we can rewrite the determinant as a product of two smaller determinants: \[ D = \begin{vmatrix} x^2 & x & 1 \\ \cos^2 \theta & \cos \theta & 1 \\ \sin^2 \theta & \sin \theta & 1 \end{vmatrix} \] ### Step 4: Perform row operations We perform row operations to simplify the determinant: - \(R_2 \leftarrow R_2 - R_1\) - \(R_3 \leftarrow R_3 - R_1\) This gives us: \[ D = \begin{vmatrix} x^2 & x & 1 \\ \cos^2 \theta - x^2 & \cos \theta - x & 0 \\ \sin^2 \theta - x^2 & \sin \theta - x & 0 \end{vmatrix} \] ### Step 5: Expand the determinant Now we can expand the determinant along the last column: \[ D = (0) - \begin{vmatrix} x^2 & x \\ \cos^2 \theta - x^2 & \cos \theta - x \end{vmatrix} + \begin{vmatrix} x^2 & x \\ \sin^2 \theta - x^2 & \sin \theta - x \end{vmatrix} \] ### Step 6: Solve the determinant Now we solve the determinants: \[ D = (x^2)(\cos \theta - x) - (x)(\cos^2 \theta - x^2) + (x^2)(\sin \theta - x) - (x)(\sin^2 \theta - x^2) \] ### Step 7: Set the determinant to zero Set the determinant equal to zero: \[ D = 0 \] ### Step 8: Find the roots From the determinant, we can find the roots: 1. \(x = \cos \theta\) 2. \(x = \sin \theta\) ### Conclusion The roots of the equation are: \[ x = \cos \theta \quad \text{and} \quad x = \sin \theta \] ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA|Exercise Exercise|94 Videos
  • CONIC SECTIONS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|1 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

x=3costheta-2cos^(3)theta, y = 3 sin theta- 2 sin^(3) theta

x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta

Find (dy)/(dx) if x=3 cos theta- 2cos^(3)theta,y=3 sin theta -2sin^(3) theta.

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.

8sin theta cos theta cos2 theta cos4 theta=sin x the x=

OBJECTIVE RD SHARMA-DETERMINANTS-Chapter Test
  1. |(sin^(2) x,cos^(2) x,1),(cos^(2) x,sin^(2) x,1),(- 10,12,2)| =

    Text Solution

    |

  2. The system of linear equations x + y + z = 2 2x + y -z = 3 3x + ...

    Text Solution

    |

  3. The roots of the equation |(3x^(2),x^(2) + x cos theta + cos^(2) the...

    Text Solution

    |

  4. |(bc,bc'+b'c,b'c'),(ca,ca'+c'a,c'a'),(ab,ab'+a'b,a'b')| is equal to

    Text Solution

    |

  5. If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamm...

    Text Solution

    |

  6. One root of the equation |(3x-8, 3, 3),(3,3x-8, 3),(3,3,3x-8)|=0 is

    Text Solution

    |

  7. If a,b,c are non-zero real numbers then D=|[b^2 c^2, bc, b+c] , [c^2a^...

    Text Solution

    |

  8. If x, y , z are in A.P., then the value of the det (A) is , where A ...

    Text Solution

    |

  9. The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)|, is

    Text Solution

    |

  10. If a , b , c are non-zero real numbers and if the system of equations ...

    Text Solution

    |

  11. If a!=6,b,c satisfy|[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

    Text Solution

    |

  12. The value of Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4...

    Text Solution

    |

  13. The value of Delta = |(a,a +b,a +2b),(a +2b,a,a +b),(a +b,a +2b,a)| is...

    Text Solution

    |

  14. If all the elements in a square matrix A of order 3 are equal to 1 or ...

    Text Solution

    |

  15. The roots of the equation |(1,4,20),(1,-2,5),(1,2x,5x^(2))| = 0 are

    Text Solution

    |

  16. If f(x) = |(sin x,cos x,tan x),(x^(3),x^(2),x),(2x,1,1)|, " then " lim...

    Text Solution

    |

  17. If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1...

    Text Solution

    |

  18. If |(x,2,3),(2,3,x),(3,x,2)|=|(1,x,4),(x,4,1),(4,1,x)|=|(0,5,x),(5,x,0...

    Text Solution

    |

  19. If |(a +x,a -x,a -x),(a -x,a +x,a -x),(a -x,a -x,a +x)| = 0, then x is...

    Text Solution

    |

  20. If Delta(1) = |(7,x,2),(-5,x +1,3),(4,x,7)| and Delta(2) = |(x,2,7),(x...

    Text Solution

    |