If `a_(1)gt0` for all `i=1,2,…..,n`. Then, the least value of `(a_(1)+a_(2)+……+a_(n))((1)/(a_(1))+(1)/(a_(2))+…+(1)/(a_(n)))`, is
A
`n^(2)`
B
2n
C
n
D
`(1)/(n)`
Text Solution
Verified by Experts
The correct Answer is:
B
Using `A.M.geG.M.,` we have `(a_(1)+a_(2)+...+a_(n))/(n)ge(a_(1)a_(2)...a_(n))^(1//n)" "...(i)` `implies(a_(1)+a_(2)+...+a_(n))gen(a_(1)a_(2)...a_(n))^(1//n)` Again, using `A.M.geG.M.,` we have `((1)/(a_(1))+(1)/(a_(2))+...+(1)/(a_(n)))/(n)ge((1)/(a_(1))xx(1)/(a_(2))xx...xx(1)/(a_(n)))^(1//n)` `implies((1)/(a_(1))+(1)/(a_(2))+...+(1)/(a_(n)))gen((1)/(a_(1)a_(2)......a_(n)))^(1//n)" "...(ii)` From (i) and (ii), we get `(a_(1)+a_(2)+...+a_(n))((1)/(a_(1))+(1)/(a_(2))+...+(1)/(a_(n)))` `gen|a_(1)a_(2)......a_(n)|^(1//n)xx{(n)/((a_(1)a_(2)....a_(n)))}^(1//n)` `implies(a_(1)+a_(2)+....+a_(n))((1)/(a_(1))+(1)/(a_(2))+....+(1)/(a_(n)))gen^(2)`
If a_(1)+a_(2)+a_(3)+a_(4)+a_(5)...+a_(n) for all a_(i)>0,i=1,2,3dots n. Then the maximum value of a_(1)^(2)a_(2)a_(3)a_(4)a_(5)..a_(n) is
If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is
If a_(1),a_(2),a_(3),"….",a_(n) are in AP, where a_(i)gt0 for all I, the value of (1)/(sqrta_(1)+sqrta_(2))+(1)/(sqrta_(2)+sqrta_(3))+"....."+(1)/(sqrta_(n-1)+sqrta_(n)) is
If a_(1),a_(2)...a_(n) are nth roots of unity then (1)/(1-a_(1))+(1)/(1-a_(2))+(1)/(1-a_(3))..+(1)/(1-a_(n)) is equal to
(1+x)(sum_(r=0)^(n)nC_(r)x^(r))+(1+x^(2))(sum_(r=0)^(n-1)(n-1)C_(r)x^(r))+...(1+x^(n))(sum_(r=0)^(1)1C_(r)x^(r))=a_(0)+a_(1)x+, then the value of (a_(1))/(a_(n)+1)+(a_(1))/(a_(n))+(a_(2))/(a_(n-1))+......+(a_(n+1))/(a_(0)) is equal to
Let a_(1),a_(2),a_(3), . . .,a_(n) be an A.P. Statement -1 : (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+(1)/(a_(3)a_(n-1))+ . . .. +(1)/(a_(n)a_(1)) =(2)/(a_(1)+a_(n))((1)/(a_(1))+(1)/(a_(2))+ . . .. +(1)/(a_(n))) Statement -2: a_(r)+a_(n-r+1)=a_(1)+a_(n)" for "1lerlen
OBJECTIVE RD SHARMA-INEQUALITIES -Section II - Assertion Reason Type