Home
Class 11
MATHS
For any n positive numbers a(1),a(2),…,a...

For any n positive numbers `a_(1),a_(2),…,a_(n)` such that
`sum_(i=1)^(n) a_(i)=alpha`, the least value of `sum_(i=1)^(n) a_(i)^(-1)`, is

A

`2n-alpha`

B

`(3n)/(alpha)`

C

`(n(n-1))/(alpha)`

D

`(n^(2))/(alpha)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the least value of the sum \( S = \sum_{i=1}^{n} a_i^{-1} \) given that \( \sum_{i=1}^{n} a_i = \alpha \), we can use the Cauchy-Schwarz inequality. ### Step-by-Step Solution: 1. **Understanding the Problem**: We need to minimize the expression \( S = \sum_{i=1}^{n} \frac{1}{a_i} \) under the constraint \( \sum_{i=1}^{n} a_i = \alpha \). 2. **Applying Cauchy-Schwarz Inequality**: According to the Cauchy-Schwarz inequality, we have: \[ \left( \sum_{i=1}^{n} a_i \right) \left( \sum_{i=1}^{n} \frac{1}{a_i} \right) \geq n^2 \] This means: \[ \alpha \cdot S \geq n^2 \] 3. **Rearranging the Inequality**: From the inequality above, we can rearrange it to find \( S \): \[ S \geq \frac{n^2}{\alpha} \] 4. **Finding the Least Value**: The least value of \( S \) occurs when the equality condition of the Cauchy-Schwarz inequality holds. This happens when all \( a_i \) are equal. If we set \( a_1 = a_2 = \ldots = a_n = \frac{\alpha}{n} \), we can substitute this back into our expression for \( S \): \[ S = \sum_{i=1}^{n} \frac{1}{a_i} = \sum_{i=1}^{n} \frac{n}{\alpha} = \frac{n^2}{\alpha} \] 5. **Conclusion**: Therefore, the least value of \( \sum_{i=1}^{n} a_i^{-1} \) is: \[ \boxed{\frac{n^2}{\alpha}} \]

To find the least value of the sum \( S = \sum_{i=1}^{n} a_i^{-1} \) given that \( \sum_{i=1}^{n} a_i = \alpha \), we can use the Cauchy-Schwarz inequality. ### Step-by-Step Solution: 1. **Understanding the Problem**: We need to minimize the expression \( S = \sum_{i=1}^{n} \frac{1}{a_i} \) under the constraint \( \sum_{i=1}^{n} a_i = \alpha \). 2. **Applying Cauchy-Schwarz Inequality**: According to the Cauchy-Schwarz inequality, we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

if sum_(i=1)^(n)a_(i)=0, where |a_(i)|=1,AA i then the value of sum_(1

for an increasing GP,a_(1),a_(2),.......a_(n) if a_(6)=4a_(4),a_(9)-a_(7)=192, then the value of sum(1)/(a_(i))

For an increasing G.P. a_(1), a_(2), a_(3),.....a_(n), " If " a_(6) = 4a_(4), a_(9) - a_(7) = 192 , then the value of sum_(l=1)^(oo) (1)/(a_(i)) is

If a_(1)=2 and a_(n)=2a_(n-1)+5 for ngt1 , the value of sum_(r=2)^(5)a_(r) is

Let a_(1),a_(2),a_(3),"......"a_(10) are in GP with a_(51)=25 and sum_(i=1)^(101)a_(i)=125 " than the value of " sum_(i=1)^(101)((1)/(a_(i))) equals.

Let a_(1),a_(2),a_(3),...,a_(101) are in G.P.with a_(101)=25 and sum_(i=1)^(201)a_(1)=625. Then the value of sum_(i=1)^(201)(1)/(a_(1)) equals

For a sequence a_(n),a_(1)=2 If (a_(n+1))/(a_(n))=(1)/(3) then find the value of sum_(r=1)^(oo)a_(r)

if a,A_(1),A_(2),A_(3)......,A_(2n),b are in A.P.then sum_(i=1)^(2n)A_(i)=(a+b)

Let a_(1),a_(2)…,a_(n) be a non-negative real numbers such that a_(1)+a_(2)+…+a_(n)=m and let S=sum_(iltj) a_(i)a_(j) , then

Assertion: Given that prod_(i=1)^(n)a_(i)=1 where a_(1),a_(2),a_(3)a_(i)in R then minimum value of sum_(i=1)^(n)a_(i) integrs is greater than or equal to their geometric mean.

OBJECTIVE RD SHARMA-INEQUALITIES -Section 1 - Solved Mcq
  1. If a-1,a2, ,an are positive real numbers whose product is a fixed num...

    Text Solution

    |

  2. If alpha in (0,pi/2),t h e nsqrt(x^2+x)+(tan^2alpha)/(sqrt(x^2+x)) is ...

    Text Solution

    |

  3. If a1,a2,a3,.......an, are 'n', distinct odd natural numbers, not divi...

    Text Solution

    |

  4. For any n positive numbers a(1),a(2),…,a(n) such that sum(i=1)^(n) a...

    Text Solution

    |

  5. If a, b, c denote the sides of a DeltaABC such that a^(2)+b^(2)-ab=c...

    Text Solution

    |

  6. For 0ltxlt(pi)/(2), (1+4cosecx)(1+8secx), is

    Text Solution

    |

  7. If a, b, c are distinct positive integers such that ab+bc+cage74, then...

    Text Solution

    |

  8. If a+b+c=1, the greatest value of (ab)/(a+b)+(bc)/(b+c)+(ca)/(c+a), ...

    Text Solution

    |

  9. If a, bgt0,a+b=1, then the least value of (1+(1)/(a))(1+(1)/(b)), is

    Text Solution

    |

  10. If a, b, c are positive real numbers such that a+b+c=1, then the great...

    Text Solution

    |

  11. If a, b, c are sides of a triangle, then ((a+b+c)^(2))/(ab+bc+ca) alwa...

    Text Solution

    |

  12. A straight line through the vertex P of a triangle PQR intersects the ...

    Text Solution

    |

  13. The minimum value of the sum of real number a^(-5),a^(-4),3a^(-3),1,a^...

    Text Solution

    |

  14. Let a,b,c,d in R such that a^2+b^2+c^2+d^2=25

    Text Solution

    |

  15. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |

  16. If x,yz are variables and 3tan x+4tany+5tanz=20, then the minimum...

    Text Solution

    |

  17. If agt0,bgt0,cgt0, then the minimum value of sqrt((4a)/(b))+root(3)(...

    Text Solution

    |

  18. If x+y+z=1, then the minimum value of xy(x+y)^(2)+yz(y+z)^(2)+zx(z+x)...

    Text Solution

    |

  19. If a,bgt0 then the maximum value of (a^(3)b)/((a+b)^(4)), is

    Text Solution

    |

  20. Let x, y, z be positive real numbers such that x + y + z = 12 and x^3y...

    Text Solution

    |