Home
Class 11
MATHS
Statement-1: 1^(3)+3^(3)+5^(3)+7^(3)+......

Statement-1: `1^(3)+3^(3)+5^(3)+7^(3)+...+(2n-1)^(3)ltn^(4),n in N`
Statement-2: If `a_(1),a_(2),a_(3),…,a_(n)` are n distinct positive real numbers and `mgt1`, then
`(a_(1)^(m)+a_(2)^(m)+...+a_(n)^(m))/(n)gt((a_(1)+a_(2)+...+a_(b))/(n))^(m)`

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
D

Clearly, statement-2 is true. Using this, we have
`(1^(3)+3^(3)+5^(3)+...+(2n-1)^(3))/(n)gt((1+3+5+...+(2n-1))/(n))^(3)`
`implies" "1^(3)+3^(3)+5^(3)+...+(2n-1)^(3)gtn^(4)`
So, statement-1 is false.
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|1 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA|Exercise Section 1 - Solved Mcq|54 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3)….a_(n) are positive and (n-1)s = a_(1)+a_(2)+….+ a_(n) then prove that a_(1),a_(2),a_(3)…a_(n) ge (n-1)^(n)(s-a_(1))(s-a_(2))….(s-a_(n))

If a_(1),a_(2)......a_(n) are n positive real numbers such that a_(1).......a_(n)=1. show that (1+a_(1))(1+a_(2))......(1+a_(n))>=2^(n)

If a_(1),a_(2),a_(3),...a_(n) are positive real numbers whose product is a fixed number c, then the minimum value of a_(1)+a_(2)+....+a_(n-1)+2a_(n) is

If a_(1),a_(2),a_(3),,a_(n) are an A.P.of non-zero terms, prove that _(1)(1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))++(1)/(a_(n-1)a_(n))=(n-1)/(a_(1)a_(n))

If a_(1),a_(2),a_(3),".....",a_(n) are in HP, than prove that a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)a_(n)=(n-1)a_(1)a_(n)

If the sequence a_(1),a_(2),a_(3),dots a_(n),.... forms an A.P.then prove that a_(1)^(2)-a_(2)^(2)+a_(3)^(2)+...+a_(4)^(2)=(n)/(2n-1)(a_(1)^(2)-a_(2n)^(2))