Home
Class 11
MATHS
Let M be a 3xx3 matrix satisfying {:M...

Let M be a `3xx3` matrix satisfying
`{:M[(0),(1),(0)]=[(1),(-1),(6)],M[(1),(-1),(0)]=[(1),(1),(-1)]and","M=[(1),(1),(1)]=[(0),(0),(12)]:}`
Then the sum of the diagonal entries of M, is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the diagonal entries of the matrix \( M \) given the conditions provided. Let's denote the elements of the matrix \( M \) as follows: \[ M = \begin{pmatrix} A & B & C \\ D & E & F \\ G & H & I \end{pmatrix} \] ### Step 1: Use the first condition From the first condition given: \[ M \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 6 \end{pmatrix} \] This means that when we multiply the first column of \( M \) by the vector \( \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \), we get the second column of \( M \): \[ \begin{pmatrix} B \\ E \\ H \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 6 \end{pmatrix} \] Thus, we can conclude: - \( B = 1 \) - \( E = -1 \) - \( H = 6 \) ### Step 2: Use the second condition From the second condition: \[ M \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \] This gives us: \[ \begin{pmatrix} A - B \\ D - E \\ G - H \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \] Substituting the known values of \( B \) and \( H \): - \( A - 1 = 1 \) → \( A = 2 \) - \( D - (-1) = 1 \) → \( D + 1 = 1 \) → \( D = 0 \) - \( G - 6 = -1 \) → \( G = 5 \) ### Step 3: Use the third condition From the third condition: \[ M \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 12 \end{pmatrix} \] This gives us: \[ \begin{pmatrix} A + B + C \\ D + E + F \\ G + H + I \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 12 \end{pmatrix} \] Substituting the known values: 1. \( 2 + 1 + C = 0 \) → \( C = -3 \) 2. \( 0 - 1 + F = 0 \) → \( F = 1 \) 3. \( 5 + 6 + I = 12 \) → \( I = 1 \) ### Step 4: Summing the diagonal entries Now we have all the values: - \( A = 2 \) - \( E = -1 \) - \( I = 1 \) The sum of the diagonal entries is: \[ A + E + I = 2 + (-1) + 1 = 2 \] ### Final Answer The sum of the diagonal entries of matrix \( M \) is \( \boxed{2} \).

To solve the problem, we need to find the sum of the diagonal entries of the matrix \( M \) given the conditions provided. Let's denote the elements of the matrix \( M \) as follows: \[ M = \begin{pmatrix} A & B & C \\ D & E & F \\ G & H & I \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|57 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

Let M be a 3xx3 matrix satisfying M[{:(0),(1),(0):}]=[{:(-1),(2),(3):}],M[{:(1),(-1),(0):}]=[{:(1),(1),(1):}]=[{:(0),(0),(12):}] then the sum of the diagonal entries of M is

Let M be a 3xx3 matrix satisfying M[[0], [1] ,[0]]=[[-1], [2], [3]] , M[[1],[-1], [0]]=[[1], [1],[-1]],and M[[1], [1], [1]]=[[0] ,[0], [12]] Then the sum of the diagonal entries of M is _________.

The matrix A satisfying A[(1,5),(0,1)]=[(3,-1),(-1,4)] is

Let M be a 3xx3 matrix satisfying M |{:(,0),(,1),(,0):}|=|{:(,-1),(,2),(,3):}|, M|{:(,1),(,-1),(,0):}|=|{:(,1),(,1),(,-1):}| and and M|{:(,1),(,1),(,1):}|= |{:(,0),(,0),(,12):}| Then the sum of the diagonal entries of M is

The matrix A satisfying the equation [(1,3),(0,1)]A=[(1,1),(0,-1)] is

OBJECTIVE RD SHARMA-MATRICES-Chapter Test
  1. Let M be a 3xx3 matrix satisfying {:M[(0),(1),(0)]=[(1),(-1),(6)],M...

    Text Solution

    |

  2. If A is an invertible matrix and B is a matrix, then

    Text Solution

    |

  3. What is the order of the product [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c)...

    Text Solution

    |

  4. If {:A=[(a,0,0),(0,b,0),(0,0,c)]:}," then "A^(-1), is

    Text Solution

    |

  5. The inverse of the matrix {:[(1,3),(3,10)]:} is equal to

    Text Solution

    |

  6. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  7. If {:X=[(3,-4),(1,-1)]:}, the value of X^n is equal to

    Text Solution

    |

  8. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  9. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  10. If {:A=[(3,1),(-1,2)]:}," then "A^(-2)=

    Text Solution

    |

  11. if |[4,x+2],[2x-3,x+1]| is a symmetric then x=

    Text Solution

    |

  12. If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

    Text Solution

    |

  13. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  14. From the matrix equation AB = AC we can conclude B = C provided that

    Text Solution

    |

  15. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  16. Let a, b, c be positive real numbers. The following system of equation...

    Text Solution

    |

  17. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  18. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  19. Consider the system of equations a1x+b1y+c1z=0 a2x+b2y+c2z=0 a3...

    Text Solution

    |

  20. The system of linear equations x+y+z=2 2x+y-z=3 3x+2y+kz=4 has a...

    Text Solution

    |

  21. If A and B are square matrices of order 3 such that absA=-1,absB=3," t...

    Text Solution

    |