Home
Class 11
MATHS
If {:A=[(1,0,0),(0,1,0),(a,b,-1)]:}, the...

If `{:A=[(1,0,0),(0,1,0),(a,b,-1)]:}`, then `A^2` is equal to

A

a null matrix

B

a unit matrix

C

`-A`

D

A

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^2 \) for the matrix \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{pmatrix} \] we will perform matrix multiplication \( A \times A \). ### Step 1: Write down the matrices to be multiplied We have: \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{pmatrix} \] We will multiply \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{pmatrix} \] ### Step 2: Calculate the elements of the resulting matrix We will calculate each element of the resulting matrix \( A^2 \) by taking the dot product of the rows of the first matrix with the columns of the second matrix. 1. **First row, first column:** \[ 1 \cdot 1 + 0 \cdot 0 + 0 \cdot a = 1 \] 2. **First row, second column:** \[ 1 \cdot 0 + 0 \cdot 1 + 0 \cdot b = 0 \] 3. **First row, third column:** \[ 1 \cdot 0 + 0 \cdot 0 + 0 \cdot -1 = 0 \] 4. **Second row, first column:** \[ 0 \cdot 1 + 1 \cdot 0 + 0 \cdot a = 0 \] 5. **Second row, second column:** \[ 0 \cdot 0 + 1 \cdot 1 + 0 \cdot b = 1 \] 6. **Second row, third column:** \[ 0 \cdot 0 + 1 \cdot 0 + 0 \cdot -1 = 0 \] 7. **Third row, first column:** \[ a \cdot 1 + b \cdot 0 + -1 \cdot a = a - a = 0 \] 8. **Third row, second column:** \[ a \cdot 0 + b \cdot 1 + -1 \cdot b = b - b = 0 \] 9. **Third row, third column:** \[ a \cdot 0 + b \cdot 0 + -1 \cdot -1 = 1 \] ### Step 3: Combine the results into the final matrix Putting all the calculated elements together, we get: \[ A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Conclusion Thus, the result of \( A^2 \) is the identity matrix: \[ A^2 = I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

To find \( A^2 \) for the matrix \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|57 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,0,0),(0,1,0),(1,b,-10] then A^2 is equal is (A) unit matrix (B) null matrix (C) A (D) -A

If A[(1, 0, 0),(x, 1, 0),(x, x, 1)] and I=[(1, 0, 0),(0,1,0),(0,0,1)] , then A^(3)-3A^(2)+3A is equal to

If A=[(1, 0,0),(0,1,0),(a,b,-1)] and I is the unit matrix of order 3, then A^(2)+2A^(4)+4A^(6) is equal to

If A=[{:(0,1),(1,0):}] then A^(2) is equal to

If A=[[1,0,0],[0,1,0],[a,b,-1]] , find A^2

A=[[0,1],[1,0]] ,then A^(2) is equal to

OBJECTIVE RD SHARMA-MATRICES-Chapter Test
  1. If {:A=[(1,0,0),(0,1,0),(a,b,-1)]:}, then A^2 is equal to

    Text Solution

    |

  2. If A is an invertible matrix and B is a matrix, then

    Text Solution

    |

  3. What is the order of the product [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c)...

    Text Solution

    |

  4. If {:A=[(a,0,0),(0,b,0),(0,0,c)]:}," then "A^(-1), is

    Text Solution

    |

  5. The inverse of the matrix {:[(1,3),(3,10)]:} is equal to

    Text Solution

    |

  6. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  7. If {:X=[(3,-4),(1,-1)]:}, the value of X^n is equal to

    Text Solution

    |

  8. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  9. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  10. If {:A=[(3,1),(-1,2)]:}," then "A^(-2)=

    Text Solution

    |

  11. if |[4,x+2],[2x-3,x+1]| is a symmetric then x=

    Text Solution

    |

  12. If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

    Text Solution

    |

  13. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  14. From the matrix equation AB = AC we can conclude B = C provided that

    Text Solution

    |

  15. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  16. Let a, b, c be positive real numbers. The following system of equation...

    Text Solution

    |

  17. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  18. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  19. Consider the system of equations a1x+b1y+c1z=0 a2x+b2y+c2z=0 a3...

    Text Solution

    |

  20. The system of linear equations x+y+z=2 2x+y-z=3 3x+2y+kz=4 has a...

    Text Solution

    |

  21. If A and B are square matrices of order 3 such that absA=-1,absB=3," t...

    Text Solution

    |