Home
Class 11
MATHS
If {:A=[(cos theta,sintheta),(-sintheta,...

If `{:A=[(cos theta,sintheta),(-sintheta,costheta)]:}," then "A^2=I`is true for

A

`theta=0`

B

`theta=pi/4`

C

`theta=pi/2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( A^2 = I \) for the matrix \[ A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \] we will calculate \( A^2 \) and show under what conditions it equals the identity matrix \( I \). ### Step 1: Calculate \( A^2 \) We start by multiplying matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \cdot \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] ### Step 2: Perform the multiplication Using the matrix multiplication rules, we calculate each element of the resulting matrix: - **First Row, First Column:** \[ \cos \theta \cdot \cos \theta + \sin \theta \cdot (-\sin \theta) = \cos^2 \theta - \sin^2 \theta \] - **First Row, Second Column:** \[ \cos \theta \cdot \sin \theta + \sin \theta \cdot \cos \theta = \sin \theta \cos \theta + \sin \theta \cos \theta = 2 \sin \theta \cos \theta \] - **Second Row, First Column:** \[ -\sin \theta \cdot \cos \theta + \cos \theta \cdot (-\sin \theta) = -\sin \theta \cos \theta - \sin \theta \cos \theta = -2 \sin \theta \cos \theta \] - **Second Row, Second Column:** \[ -\sin \theta \cdot \sin \theta + \cos \theta \cdot \cos \theta = \cos^2 \theta - \sin^2 \theta \] Thus, we have: \[ A^2 = \begin{pmatrix} \cos^2 \theta - \sin^2 \theta & 2 \sin \theta \cos \theta \\ -2 \sin \theta \cos \theta & \cos^2 \theta - \sin^2 \theta \end{pmatrix} \] ### Step 3: Set \( A^2 \) equal to the identity matrix \( I \) The identity matrix \( I \) is given by: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] For \( A^2 \) to equal \( I \), we need: 1. \( \cos^2 \theta - \sin^2 \theta = 1 \) 2. \( 2 \sin \theta \cos \theta = 0 \) ### Step 4: Solve the equations 1. From \( \cos^2 \theta - \sin^2 \theta = 1 \): \[ \cos^2 \theta = 1 \implies \sin^2 \theta = 0 \implies \sin \theta = 0 \] This occurs when \( \theta = n\pi \) for \( n \in \mathbb{Z} \). 2. From \( 2 \sin \theta \cos \theta = 0 \): \[ \sin \theta = 0 \quad \text{or} \quad \cos \theta = 0 \] Since we already found \( \sin \theta = 0 \), this condition is satisfied. ### Conclusion Thus, \( A^2 = I \) is true when \( \theta = n\pi \) for \( n \in \mathbb{Z} \). ---

To prove that \( A^2 = I \) for the matrix \[ A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \] we will calculate \( A^2 \) and show under what conditions it equals the identity matrix \( I \). ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|57 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If {:A=[(costheta,-sintheta),(sintheta,costheta)]:},"then" A^T+A=I_2 , if

If A = ((costheta,-sintheta),(sintheta,costheta)) then

If {:A=[(cos theta,-sintheta),(sintheta,costheta)]:} , then which one of the following is not correct?

If A=[[costheta, sintheta], [-sintheta, costheta]] , then

Let A=[{:(costheta,sintheta),(-sintheta,costheta):}] , then |2A| is equal to

If A={:[(costheta,-sintheta),(-sintheta,costheta)]:}, and AB=BA=I" then "B=

If cos theta-4sintheta=1, the sintheta+4costheta=

If A=[(costheta,-sintheta),(sintheta,costheta)] find the values of theta satisfying the equation A^(T)+A =" "I _(2).

(sintheta+sin2theta)/(1+costheta+cos2theta) =

(sintheta+sin2theta)/(1+costheta+cos2theta)=?

OBJECTIVE RD SHARMA-MATRICES-Chapter Test
  1. If {:A=[(cos theta,sintheta),(-sintheta,costheta)]:}," then "A^2=Iis t...

    Text Solution

    |

  2. If A is an invertible matrix and B is a matrix, then

    Text Solution

    |

  3. What is the order of the product [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c)...

    Text Solution

    |

  4. If {:A=[(a,0,0),(0,b,0),(0,0,c)]:}," then "A^(-1), is

    Text Solution

    |

  5. The inverse of the matrix {:[(1,3),(3,10)]:} is equal to

    Text Solution

    |

  6. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  7. If {:X=[(3,-4),(1,-1)]:}, the value of X^n is equal to

    Text Solution

    |

  8. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  9. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  10. If {:A=[(3,1),(-1,2)]:}," then "A^(-2)=

    Text Solution

    |

  11. if |[4,x+2],[2x-3,x+1]| is a symmetric then x=

    Text Solution

    |

  12. If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

    Text Solution

    |

  13. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  14. From the matrix equation AB = AC we can conclude B = C provided that

    Text Solution

    |

  15. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  16. Let a, b, c be positive real numbers. The following system of equation...

    Text Solution

    |

  17. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  18. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  19. Consider the system of equations a1x+b1y+c1z=0 a2x+b2y+c2z=0 a3...

    Text Solution

    |

  20. The system of linear equations x+y+z=2 2x+y-z=3 3x+2y+kz=4 has a...

    Text Solution

    |

  21. If A and B are square matrices of order 3 such that absA=-1,absB=3," t...

    Text Solution

    |