Home
Class 11
MATHS
If {:A=[(i,0),(0,i)]:},n in N" then " A^...

If `{:A=[(i,0),(0,i)]:},n in N" then " A^(4n)`equal

A

`{:[(0,i),(i,0)]:}`

B

`{:[(0,0),(0,0)]:}`

C

`{:[(1,0),(0,1)]:}`

D

`{:[(0,i),(i,0)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( A^{4n} \) where \( A = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \) and \( n \) is a natural number. ### Step-by-Step Solution: **Step 1: Find \( A^2 \)** We start by calculating \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \cdot \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \] Calculating the product: \[ = \begin{pmatrix} i \cdot i & 0 \\ 0 & i \cdot i \end{pmatrix} = \begin{pmatrix} i^2 & 0 \\ 0 & i^2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I \] where \( I \) is the identity matrix. **Step 2: Find \( A^4 \)** Next, we calculate \( A^4 \): \[ A^4 = A^2 \cdot A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \] Calculating the product: \[ = \begin{pmatrix} (-1)(-1) & 0 \\ 0 & (-1)(-1) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \] **Step 3: Find \( A^{4n} \)** Now, we can find \( A^{4n} \): \[ A^{4n} = (A^4)^n = I^n \] Since the identity matrix raised to any power is still the identity matrix: \[ I^n = I \] ### Final Answer: Thus, \( A^{4n} = I \), where \( I \) is the identity matrix. ---

To solve the problem, we need to find \( A^{4n} \) where \( A = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \) and \( n \) is a natural number. ### Step-by-Step Solution: **Step 1: Find \( A^2 \)** We start by calculating \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \cdot \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Section I - Assertion Reason Type|12 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Exercise|80 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A=[i00i],n in N, then A^(4n) equals [0ii0] (b) [0000](c)[1001](d)[0ii0]

If A=[[i,0],[0,i]];i=sqrt(-1), then A^(n) is equal to

[[i,0,00,i,00,0,i]] then A^(4n+1)=...n in N

If I_(n)=int(sin x)^(n)dx,n in N, then 5I_(4)-6I_(6) is equal to

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

The co-ordinates of a point A_(n) is (n,n,sqrtn) where n in N, If O(0,0) then sum_(i=1)^(12) (OA_(i))^(2) equals "_________".

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

OBJECTIVE RD SHARMA-MATRICES-Section I - Solved Mcqs
  1. If A=[a(ij)] is a square matrix of even order such that a(ij)=i^2-j^2...

    Text Solution

    |

  2. If [(cos\ (2pi)/7,-sin\ (2pi)/7),(sin\ (2pi)/7,cos\ (2pi)/7)]^k=[(1,0)...

    Text Solution

    |

  3. If {:A=[(i,0),(0,i)]:},n in N" then " A^(4n)equal

    Text Solution

    |

  4. If A is a singular matrix, then adj A is a. singular b. non singula...

    Text Solution

    |

  5. If A, B are two n xx n non-singular matrices, then (1) AB is non-singu...

    Text Solution

    |

  6. Let A be an inbertible matrix. Which of the following is not true?

    Text Solution

    |

  7. If the matrix AB s zero, then

    Text Solution

    |

  8. If {:A=[(a,0,0),(0,a,0),(0,0,a)]:}, then the value of abs(adjA), is

    Text Solution

    |

  9. If A=[(1,2,-1),(-1,1,2),(2,-1,1)], then det (adj(adj A) is

    Text Solution

    |

  10. If B is a non-singular matrix and A is a square matrix, then det (B^(-...

    Text Solution

    |

  11. For any 2xx2 matrix, if A\ (a d j\ A)=[10 0 0 10] , then |A| is equal ...

    Text Solution

    |

  12. If A, B are square matrices of order 3,A is non0singular and AB = O, t...

    Text Solution

    |

  13. If {:A=[(n,0,0),(0,n,0),(0,0,n)]and B=[(a1,a2,a3),(b1,b2,b3),(c1,c2,c3...

    Text Solution

    |

  14. If A=[1a0 1] , then A^n (where n in N) equals [1n a0 1] (b) [1n^2a0 1...

    Text Solution

    |

  15. If A^5=O such that A^n != I for 1 <= n <= 4, then (I - A)^-1 is equal ...

    Text Solution

    |

  16. If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists ...

    Text Solution

    |

  17. The system of equations: x+y+z=5 x+2y+3z=9 x+3y+lambdaz=mu has a un...

    Text Solution

    |

  18. The matrix overset-A={:[(-i,1+2i),(-1+2i,0)]:} is which of the followi...

    Text Solution

    |

  19. If {:A=[(alpha,0),(1,1)]andB=[(1,0),(5,1)]:}, then the value of alpha ...

    Text Solution

    |

  20. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |