Home
Class 11
MATHS
If {:A=[(n,0,0),(0,n,0),(0,0,n)]and B=[(...

If `{:A=[(n,0,0),(0,n,0),(0,0,n)]and B=[(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)]:}` , then AB is equal to

A

BA=I

B

nB

C

`B^n`

D

A + B

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product of the matrices A and B, where: \[ A = \begin{pmatrix} n & 0 & 0 \\ 0 & n & 0 \\ 0 & 0 & n \end{pmatrix} \] and \[ B = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \] ### Step 1: Write down the matrices A and B We have: \[ A = \begin{pmatrix} n & 0 & 0 \\ 0 & n & 0 \\ 0 & 0 & n \end{pmatrix} \] \[ B = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \] ### Step 2: Multiply the matrices A and B To multiply the two matrices, we will use the formula for matrix multiplication. The element in the ith row and jth column of the resulting matrix AB is calculated as the dot product of the ith row of A and the jth column of B. The resulting matrix AB will be: \[ AB = \begin{pmatrix} n \cdot a_1 + 0 \cdot b_1 + 0 \cdot c_1 & n \cdot a_2 + 0 \cdot b_2 + 0 \cdot c_2 & n \cdot a_3 + 0 \cdot b_3 + 0 \cdot c_3 \\ 0 \cdot a_1 + n \cdot b_1 + 0 \cdot c_1 & 0 \cdot a_2 + n \cdot b_2 + 0 \cdot c_2 & 0 \cdot a_3 + n \cdot b_3 + 0 \cdot c_3 \\ 0 \cdot a_1 + 0 \cdot b_1 + n \cdot c_1 & 0 \cdot a_2 + 0 \cdot b_2 + n \cdot c_2 & 0 \cdot a_3 + 0 \cdot b_3 + n \cdot c_3 \end{pmatrix} \] This simplifies to: \[ AB = \begin{pmatrix} n a_1 & n a_2 & n a_3 \\ n b_1 & n b_2 & n b_3 \\ n c_1 & n c_2 & n c_3 \end{pmatrix} \] ### Step 3: Factor out n from the resulting matrix We can factor out n from the resulting matrix: \[ AB = n \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \] This shows that: \[ AB = nB \] ### Conclusion Thus, the final result is: \[ AB = nB \]

To solve the problem, we need to find the product of the matrices A and B, where: \[ A = \begin{pmatrix} n & 0 & 0 \\ 0 & n & 0 \\ 0 & 0 & n \end{pmatrix} \] and \[ B = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \] ### Step 1: Write down the matrices A and B ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Section I - Assertion Reason Type|12 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Exercise|80 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A=[(n,0 ,0),( 0,n,0),( 0, 0,n)] and B=[(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)] , then A B is equal to (A) B (B) n B (C) B^n (D) A+B

if D_1=|{:(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3):}| and D_2=|{:(a_1+2a_2+3a_3,2a_3,5a_2),(b_1+2b_2+3b_3,2b_3, 5b_2),(c_1+2c_2 + 3c_3 , 2c_3 , 5c_2):}| then D_2/D_1 is equal to :

Let a_i^2+b_i^2+c_i^2=1 (for i=1,2,3) and a_ia_j+b_ib_j+c_ic_j=0 (i != j;i,j=1,2,3). Then the absolute value of determinant |(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)| (A) 1/2 (B) 0 (C) 1 (D) 2

Find the value of lambda for which |{:(2a_1+b_1 , 2a_2+b_2 , 2a_3+b_3),(2b_1+c_1, 2b_2+c_2 , 2b_3+c_3),(2c_1+a_1,2c_2+a_2, 2c_3+a_3):}|=lambda|{:(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3):}|

If veca=a_1 vecl+a_2 vecm+a_3vecn, vecb=b_1 vecl+b_2vecm+b_3vecn and vecc=c_1 vecl+v_2vecm+c_3 vecn where vecl,vecm,vecn are three non coplnar vectors then show that [veca vecb vecc]=|(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)|[vecl vecm vecn]

Three linear equations a_1x+b_1y+c_1z=0, a_2x+b_2y+c_2z=0,a_3x+b_3y+c_3z=0 are consistent if (A) |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=0 (B) |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=-1 (C) a_1b_1c_1+a_2b_2c_2+a_3b_3c_3=0 (D) none of these

If a_1x+b_1y+c_1z=0, a_2x+b_2y+c_2z=0, a_3x+b_3y+c_3z=0 and |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=0 , then the given system then

Consider the system of equations a_1x+b_1y+c_1z=0 a_2x+b_2y+c_2z=0 a_3x+b_3y+c_3z=0 if {:abs((a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)):}=0 , then the system has

OBJECTIVE RD SHARMA-MATRICES-Section I - Solved Mcqs
  1. For any 2xx2 matrix, if A\ (a d j\ A)=[10 0 0 10] , then |A| is equal ...

    Text Solution

    |

  2. If A, B are square matrices of order 3,A is non0singular and AB = O, t...

    Text Solution

    |

  3. If {:A=[(n,0,0),(0,n,0),(0,0,n)]and B=[(a1,a2,a3),(b1,b2,b3),(c1,c2,c3...

    Text Solution

    |

  4. If A=[1a0 1] , then A^n (where n in N) equals [1n a0 1] (b) [1n^2a0 1...

    Text Solution

    |

  5. If A^5=O such that A^n != I for 1 <= n <= 4, then (I - A)^-1 is equal ...

    Text Solution

    |

  6. If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists ...

    Text Solution

    |

  7. The system of equations: x+y+z=5 x+2y+3z=9 x+3y+lambdaz=mu has a un...

    Text Solution

    |

  8. The matrix overset-A={:[(-i,1+2i),(-1+2i,0)]:} is which of the followi...

    Text Solution

    |

  9. If {:A=[(alpha,0),(1,1)]andB=[(1,0),(5,1)]:}, then the value of alpha ...

    Text Solution

    |

  10. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  11. The element in the first row and third column of the inverse of the ma...

    Text Solution

    |

  12. A square matrix can always be expressed as

    Text Solution

    |

  13. If {:[(a,b^3),(2,0)]=[(1,8),(2,0)]," then " [(a,b),(2,0)](-1)^1:}=

    Text Solution

    |

  14. If A is a square matrix such that A^2-A+l=0, then the inverse of A is

    Text Solution

    |

  15. If A is a 3x3 matrix and B is its adjoint matrix the determinant of B ...

    Text Solution

    |

  16. If A=1/3{:[(1,2,2),(2,1,-2),(a,2,b)]:} is an orthogonal matrix, then

    Text Solution

    |

  17. If A=[{:(omega,0),(0,omega):}], where omega is cube root of unity, the...

    Text Solution

    |

  18. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  19. If {:A=[(0,1,-1),(2,1,3),(3,2,1)]:} then (A(adj A)A^(-1))A=

    Text Solution

    |

  20. If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equa...

    Text Solution

    |