Home
Class 11
MATHS
If {:A=[(alpha,0),(1,1)]andB=[(1,0),(5,1...

If `{:A=[(alpha,0),(1,1)]andB=[(1,0),(5,1)]:}`, then the value of `alpha` for which `A^2=B`, is

A

1

B

-1

C

4

D

no real values

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \alpha \) for which \( A^2 = B \), we will first calculate \( A^2 \) and then set it equal to matrix \( B \). Given: \[ A = \begin{pmatrix} \alpha & 0 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 5 & 1 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To calculate \( A^2 \), we perform the matrix multiplication \( A \times A \): \[ A^2 = A \times A = \begin{pmatrix} \alpha & 0 \\ 1 & 1 \end{pmatrix} \times \begin{pmatrix} \alpha & 0 \\ 1 & 1 \end{pmatrix} \] ### Step 2: Perform the multiplication The resulting matrix \( A^2 \) will be: \[ A^2 = \begin{pmatrix} \alpha \cdot \alpha + 0 \cdot 1 & \alpha \cdot 0 + 0 \cdot 1 \\ 1 \cdot \alpha + 1 \cdot 1 & 1 \cdot 0 + 1 \cdot 1 \end{pmatrix} \] Calculating each element: - First row, first column: \( \alpha^2 + 0 = \alpha^2 \) - First row, second column: \( 0 + 0 = 0 \) - Second row, first column: \( \alpha + 1 \) - Second row, second column: \( 0 + 1 = 1 \) Thus, we have: \[ A^2 = \begin{pmatrix} \alpha^2 & 0 \\ \alpha + 1 & 1 \end{pmatrix} \] ### Step 3: Set \( A^2 \) equal to \( B \) Now we set \( A^2 \) equal to \( B \): \[ \begin{pmatrix} \alpha^2 & 0 \\ \alpha + 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 5 & 1 \end{pmatrix} \] ### Step 4: Create equations from the matrix equality From the equality of the matrices, we can derive the following equations: 1. \( \alpha^2 = 1 \) 2. \( \alpha + 1 = 5 \) ### Step 5: Solve the equations **From the first equation:** \[ \alpha^2 = 1 \implies \alpha = 1 \text{ or } \alpha = -1 \] **From the second equation:** \[ \alpha + 1 = 5 \implies \alpha = 4 \] ### Step 6: Check for consistency We have two values for \( \alpha \): \( 1 \), \( -1 \), and \( 4 \). However, both \( \alpha = 1 \) and \( \alpha = -1 \) do not satisfy the second equation \( \alpha + 1 = 5 \). Therefore, the only value that satisfies the second equation is \( \alpha = 4 \). ### Conclusion The value of \( \alpha \) for which \( A^2 = B \) is: \[ \alpha = 4 \]

To find the value of \( \alpha \) for which \( A^2 = B \), we will first calculate \( A^2 \) and then set it equal to matrix \( B \). Given: \[ A = \begin{pmatrix} \alpha & 0 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 5 & 1 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Section I - Assertion Reason Type|12 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Exercise|80 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A=[[alpha,01,1]] and B=[[1,05,1]], find the values of alpha for which A^(2),=B

If A = [{:(alpha, 0), (1, 1):}] " and " B = [{:(1, 0), (5, 1):}] then value of alpha for which A^(2) = B , is

If A=[(alpha,0),(1,1)] and B=[(9,a),(b,c)] and A^(2)=B , then the value of a + b + c is

If A=[(x,0),(1,1)]andB=[(1,0),(5,1)] find x such that A^(2)=B .

If A=[{:(alpha,0),(1,1):}]and B=[{:(1,0),(2,1):}] such that A^(2)=B , then what is the value of alpha ?

If A=[{:(alpha,0),(1,1)] and B=[{:(1,0),(2,1):}] such that A^(2)=B then what is the value of alpha ?

If A and B are non - singular matrices of order three such that adj(AB)=[(1,1,1),(1,alpha, 1),(1,1,alpha)] and |B^(2)adjA|=alpha^(2)+3alpha-8 , then the value of alpha is equal to

OBJECTIVE RD SHARMA-MATRICES-Section I - Solved Mcqs
  1. The system of equations: x+y+z=5 x+2y+3z=9 x+3y+lambdaz=mu has a un...

    Text Solution

    |

  2. The matrix overset-A={:[(-i,1+2i),(-1+2i,0)]:} is which of the followi...

    Text Solution

    |

  3. If {:A=[(alpha,0),(1,1)]andB=[(1,0),(5,1)]:}, then the value of alpha ...

    Text Solution

    |

  4. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  5. The element in the first row and third column of the inverse of the ma...

    Text Solution

    |

  6. A square matrix can always be expressed as

    Text Solution

    |

  7. If {:[(a,b^3),(2,0)]=[(1,8),(2,0)]," then " [(a,b),(2,0)](-1)^1:}=

    Text Solution

    |

  8. If A is a square matrix such that A^2-A+l=0, then the inverse of A is

    Text Solution

    |

  9. If A is a 3x3 matrix and B is its adjoint matrix the determinant of B ...

    Text Solution

    |

  10. If A=1/3{:[(1,2,2),(2,1,-2),(a,2,b)]:} is an orthogonal matrix, then

    Text Solution

    |

  11. If A=[{:(omega,0),(0,omega):}], where omega is cube root of unity, the...

    Text Solution

    |

  12. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  13. If {:A=[(0,1,-1),(2,1,3),(3,2,1)]:} then (A(adj A)A^(-1))A=

    Text Solution

    |

  14. If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  15. If A is an invertible matrix of order 3xx3 such that |A|=2 . Then, ...

    Text Solution

    |

  16. A and B are square matrices of order 3xx3 , A is an orthogonal matrix ...

    Text Solution

    |

  17. If A=[(alpha,2),(2,alpha)] and determinant (A^3)=125, then the value ...

    Text Solution

    |

  18. If {:P=[(sqrt3/2,1/2),(1/2,sqrt3/2)],A=[(1,1),(0,1)]:}and Q=PAP^T," th...

    Text Solution

    |

  19. If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

    Text Solution

    |

  20. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |