Home
Class 11
MATHS
If A=1/3{:[(1,2,2),(2,1,-2),(a,2,b)]:} i...

If `A=1/3{:[(1,2,2),(2,1,-2),(a,2,b)]:}` is an orthogonal matrix, then

A

`a=2,b=1`

B

`a=-2,b=-1`

C

`a=2,b=-1`

D

`a=-2,b=1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \) and \( b \) for the orthogonal matrix \( A = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{pmatrix} \), we will use the property that for an orthogonal matrix, \( A A^T = I \), where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix. ### Step 1: Calculate the Transpose of Matrix A The transpose of matrix \( A \) is obtained by swapping rows with columns. Thus, \[ A^T = \frac{1}{3} \begin{pmatrix} 1 & 2 & a \\ 2 & 1 & 2 \\ 2 & -2 & b \end{pmatrix} \] ### Step 2: Multiply A and A^T Now we will multiply \( A \) and \( A^T \): \[ A A^T = \left( \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{pmatrix} \right) \left( \frac{1}{3} \begin{pmatrix} 1 & 2 & a \\ 2 & 1 & 2 \\ 2 & -2 & b \end{pmatrix} \right) \] This results in: \[ A A^T = \frac{1}{9} \begin{pmatrix} 1 \cdot 1 + 2 \cdot 2 + 2 \cdot 2 & 1 \cdot 2 + 2 \cdot 1 + 2 \cdot -2 & 1 \cdot a + 2 \cdot 2 + 2 \cdot b \\ 2 \cdot 1 + 1 \cdot 2 + -2 \cdot 2 & 2 \cdot 2 + 1 \cdot 1 + -2 \cdot -2 & 2 \cdot a + 1 \cdot 2 + -2 \cdot b \\ a \cdot 1 + 2 \cdot 2 + b \cdot 2 & a \cdot 2 + 2 \cdot 1 + b \cdot -2 & a \cdot a + 2 \cdot 2 + b \cdot b \end{pmatrix} \] ### Step 3: Simplify the Elements Calculating each element: 1. First row, first column: \[ 1 + 4 + 4 = 9 \] 2. First row, second column: \[ 2 + 2 - 4 = 0 \] 3. First row, third column: \[ a + 4 + 2b \] 4. Second row, first column: \[ 2 + 2 - 4 = 0 \] 5. Second row, second column: \[ 4 + 1 + 4 = 9 \] 6. Second row, third column: \[ 2a + 2 - 2b \] 7. Third row, first column: \[ a + 4 + 2b \] 8. Third row, second column: \[ 2a + 2 - 2b \] 9. Third row, third column: \[ a^2 + 4 + b^2 \] Thus, we have: \[ A A^T = \frac{1}{9} \begin{pmatrix} 9 & 0 & a + 4 + 2b \\ 0 & 9 & 2a + 2 - 2b \\ a + 4 + 2b & 2a + 2 - 2b & a^2 + 4 + b^2 \end{pmatrix} \] ### Step 4: Set Equal to Identity Matrix We set \( A A^T \) equal to the identity matrix \( I \): \[ \frac{1}{9} \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \] From this, we can equate the elements: 1. From the first row, third column: \[ a + 4 + 2b = 0 \quad (1) \] 2. From the second row, third column: \[ 2a + 2 - 2b = 0 \quad (2) \] 3. From the third row, third column: \[ a^2 + 4 + b^2 = 9 \quad (3) \] ### Step 5: Solve the Equations From equation (1): \[ a + 4 + 2b = 0 \implies a + 2b = -4 \quad (4) \] From equation (2): \[ 2a + 2 - 2b = 0 \implies 2a - 2b = -2 \implies a - b = -1 \quad (5) \] Now we can solve equations (4) and (5) simultaneously. From (5): \[ a = b - 1 \quad (6) \] Substituting (6) into (4): \[ (b - 1) + 2b = -4 \implies 3b - 1 = -4 \implies 3b = -3 \implies b = -1 \] Substituting \( b = -1 \) back into (6): \[ a = -1 - 1 = -2 \] ### Final Values Thus, the values of \( a \) and \( b \) are: \[ a = -2, \quad b = -1 \]

To determine the values of \( a \) and \( b \) for the orthogonal matrix \( A = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{pmatrix} \), we will use the property that for an orthogonal matrix, \( A A^T = I \), where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix. ### Step 1: Calculate the Transpose of Matrix A The transpose of matrix \( A \) is obtained by swapping rows with columns. Thus, \[ A^T = \frac{1}{3} \begin{pmatrix} 1 & 2 & a \\ 2 & 1 & 2 \\ 2 & -2 & b \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Section I - Assertion Reason Type|12 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Exercise|80 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

STATEMENT -1 : a=(1)/(3){:[(1,-2,2),(-2,1,2),(-2,-2,-1)]:} is an orthogonal matrix and STATEMENT-2 : If A and B are otthogonal, then AB is also orthogonal.

Show the A=(1)/(3)[(-1,2,-2),(-2,1,2),(2,2,1)] is proper orthogonal matrix.

If A=(1)/(3)[[1,2,22,1,-2a,2,b]] is an orthogonal ,b=-1 d.b=1

If A=[(1,2,2),(2,1,-2),(a,2,b)] is a matrix satisfying the equation A A^T=9I , where I is 3xx3 identity matrix, then the ordered pair (a,b) is equal to : (A) (2,-1) (B) (-2,1) (C) (2, 1) (D) (-2,-1)

{:A=[(1,2,2),(2,1,-2),(a,2,b)]:} is a matrix and AAT=91, then the ordered pair (a,b) is equal to

if A=[(1,2,3),(2,1,-1),(a,2,b)] is a matrix satisfying A A'=9I_(3,) find the value of |a|+|b|.

If A=[(1,-2,1),(2,lambda,-2),(1,3,-3)] be the adjoint matrix of matrix B such that |B|=9 , then the value of lambda is equal to

Matrix A=[(0,2b,-2),(3,1,3),(3a,3,-1)] is given to be symmetric, find the values of a and b

If A=[(1,4),(3,2),(2,5)], B=[(-1,-2),(0,5),(3,1)] , find the matrix D such that A+B-D=0 .

OBJECTIVE RD SHARMA-MATRICES-Section I - Solved Mcqs
  1. If A is a square matrix such that A^2-A+l=0, then the inverse of A is

    Text Solution

    |

  2. If A is a 3x3 matrix and B is its adjoint matrix the determinant of B ...

    Text Solution

    |

  3. If A=1/3{:[(1,2,2),(2,1,-2),(a,2,b)]:} is an orthogonal matrix, then

    Text Solution

    |

  4. If A=[{:(omega,0),(0,omega):}], where omega is cube root of unity, the...

    Text Solution

    |

  5. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  6. If {:A=[(0,1,-1),(2,1,3),(3,2,1)]:} then (A(adj A)A^(-1))A=

    Text Solution

    |

  7. If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  8. If A is an invertible matrix of order 3xx3 such that |A|=2 . Then, ...

    Text Solution

    |

  9. A and B are square matrices of order 3xx3 , A is an orthogonal matrix ...

    Text Solution

    |

  10. If A=[(alpha,2),(2,alpha)] and determinant (A^3)=125, then the value ...

    Text Solution

    |

  11. If {:P=[(sqrt3/2,1/2),(1/2,sqrt3/2)],A=[(1,1),(0,1)]:}and Q=PAP^T," th...

    Text Solution

    |

  12. If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

    Text Solution

    |

  13. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  14. In Example 50, the sum of the elements of U^(-1) is

    Text Solution

    |

  15. If U is same as in Example 50, then the value of {:[(3,2,0)]U[(3),(2),...

    Text Solution

    |

  16. If A and B are square matrices of size nxxn such that A^2-B^2 = (A-B)(...

    Text Solution

    |

  17. If A and B are any two different square matrices of order n with A^3=B...

    Text Solution

    |

  18. Let {:A=[(0,0,-1),(0,-1,0),(-1,0,0)]:}. The only correct statement abo...

    Text Solution

    |

  19. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  20. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If A^2 = 25, the...

    Text Solution

    |