Home
Class 11
MATHS
If {:A=[(0,1,-1),(2,1,3),(3,2,1)]:} then...

If `{:A=[(0,1,-1),(2,1,3),(3,2,1)]:}` then `(A(adj A)A^(-1))A=`

A

`2{:[(3,0,0),(0,3,0),(0,0,3)]:}`

B

`{:[(-6,0,0),(0,-6,0),(0,0,-6)]:}`

C

`{:[(0,1//6,-1//6),(2//6,1//6,3//6),(3//6,2//6,1//6)]:}`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( (A \cdot \text{adj} A \cdot A^{-1}) A \) where \( A = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix} \). ### Step-by-Step Solution: 1. **Identify the Matrix A**: \[ A = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix} \] **Hint**: Make sure to write down the matrix correctly as it will be used in further calculations. 2. **Calculate the Determinant of A**: The determinant of a 3x3 matrix can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ \text{det}(A) = 0(1 \cdot 1 - 3 \cdot 2) - 1(2 \cdot 1 - 3 \cdot 3) + (-1)(2 \cdot 2 - 1 \cdot 3) \] Simplifying: \[ = 0 - 1(2 - 9) - 1(4 - 3) = 0 + 7 - 1 = 6 \] **Hint**: Remember that the determinant is a scalar value that helps in finding the adjoint and inverse of the matrix. 3. **Use the Property of Matrices**: We know that: \[ A \cdot \text{adj} A = \text{det}(A) \cdot I \] where \( I \) is the identity matrix. Therefore: \[ A \cdot \text{adj} A = 6I \] **Hint**: This property is crucial as it simplifies our calculations significantly. 4. **Calculate \( A^{-1} \cdot A \)**: We know that: \[ A^{-1} \cdot A = I \] **Hint**: The inverse of a matrix multiplied by the matrix itself always results in the identity matrix. 5. **Combine the Results**: Now substituting back into our original expression: \[ (A \cdot \text{adj} A \cdot A^{-1}) A = (6I \cdot I) A = 6I \cdot A \] This simplifies to: \[ 6A \] **Hint**: Multiplying by the identity matrix does not change the matrix. 6. **Calculate \( 6A \)**: Now, we multiply the matrix \( A \) by 6: \[ 6A = 6 \begin{pmatrix} 0 & 1 & -1 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 6 & -6 \\ 12 & 6 & 18 \\ 18 & 12 & 6 \end{pmatrix} \] **Hint**: Ensure to multiply each element of the matrix by 6 correctly. ### Final Result: Thus, the final result is: \[ (A \cdot \text{adj} A \cdot A^{-1}) A = \begin{pmatrix} 0 & 6 & -6 \\ 12 & 6 & 18 \\ 18 & 12 & 6 \end{pmatrix} \]

To solve the problem, we need to evaluate the expression \( (A \cdot \text{adj} A \cdot A^{-1}) A \) where \( A = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix} \). ### Step-by-Step Solution: 1. **Identify the Matrix A**: \[ A = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Section I - Assertion Reason Type|12 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Exercise|80 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A[(2,0,3),(1,-1,2),(3,-2,0)] , then (adj A)A=

If A=[(3,2,-1),(4,-1,2),(0,1,2)] then adj (adjA) is

If A=[{:(,1,2),(,2,1):}] then adj A=

If A = [(1,1,1),(1,2,-3),(2,-1,3)] then | adj A| =

If [{:( 1,2,3),(1,3,5),(1,5,12):}] then adj (adj A) is

If A={:[(2,-1,1),(1,2,1),(-1,1,3)]:}" then :"|adj(adjA)|=

OBJECTIVE RD SHARMA-MATRICES-Section I - Solved Mcqs
  1. If A=[{:(omega,0),(0,omega):}], where omega is cube root of unity, the...

    Text Solution

    |

  2. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  3. If {:A=[(0,1,-1),(2,1,3),(3,2,1)]:} then (A(adj A)A^(-1))A=

    Text Solution

    |

  4. If A is non-singular and (A-2I)(A-4I)=O ,t h e n1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  5. If A is an invertible matrix of order 3xx3 such that |A|=2 . Then, ...

    Text Solution

    |

  6. A and B are square matrices of order 3xx3 , A is an orthogonal matrix ...

    Text Solution

    |

  7. If A=[(alpha,2),(2,alpha)] and determinant (A^3)=125, then the value ...

    Text Solution

    |

  8. If {:P=[(sqrt3/2,1/2),(1/2,sqrt3/2)],A=[(1,1),(0,1)]:}and Q=PAP^T," th...

    Text Solution

    |

  9. If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

    Text Solution

    |

  10. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  11. In Example 50, the sum of the elements of U^(-1) is

    Text Solution

    |

  12. If U is same as in Example 50, then the value of {:[(3,2,0)]U[(3),(2),...

    Text Solution

    |

  13. If A and B are square matrices of size nxxn such that A^2-B^2 = (A-B)(...

    Text Solution

    |

  14. If A and B are any two different square matrices of order n with A^3=B...

    Text Solution

    |

  15. Let {:A=[(0,0,-1),(0,-1,0),(-1,0,0)]:}. The only correct statement abo...

    Text Solution

    |

  16. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  17. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If A^2 = 25, the...

    Text Solution

    |

  18. If {:A=alpha[(1,1+i),(1-i,-1)]:}a in R, is a unitary matrix then alpha...

    Text Solution

    |

  19. If [(0,2b,c),(a,b,-c),(a,-b,c)] is orthogonal matrix, then the value ...

    Text Solution

    |

  20. If A=[a(ij)](nxxn), where a(ij)=i^100+j^100, then lim(ntooo) ((overse...

    Text Solution

    |