Home
Class 11
MATHS
Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U...

Let `{:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U_1,U_2,U_3` be column matrices satisfying `{:AU_1[(1),(0),(0)],AU_2[(2),(3),(6)],AU_3[(2),(3),(1)]:}`.If U is `3xx3` matrix whose columns are `U_1,U_2,U_3," then "absU=`

A

3

B

-3

C

`3//2`

D

2

Text Solution

Verified by Experts

The correct Answer is:
A

Let `{:U_1[(a),(b),(c)],U_2[(p),(q),(r)],andU_3[(x),(y),(z)]:}` Then
`{:AU_1[(1),(0),(0)]rArr[(a),(2a+b),(3a+2b+c)]=[(1),(0),(0)]rArra=1,b=-2, c=1:}`
`{:AU_2[(2),(3),(0)]rArr[(p),(2p+q),(3p+2q+r)]=[(2),(3),(0)]rArrp=2,q=-1,r=4:}`
and,
`{:AU_2[(2),(3),(1)]rArr[(x),(2x+y),(3x+2y+z)]=[(2),(3),(1)]rArrx=2,y=-1,z=-3:}`
`:. U{:abs((U_1,U_2,U_3))=[(1,2,2),(-2,-1,-1),(1,-4,-3)]:}`
`rArr absU={:abs((1,2,2),(-2,-1,-1),(1,-4,-3)) =abs((1,2,0),(-2,-1,0),(1,-4,1)):}" Applying " C_3 to C_3-C_2`
`rArr absU=3`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Section I - Assertion Reason Type|12 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Exercise|80 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

Let A=[(1,0,0),(2,1,0),(3,2,1)], if U_1, U_2 and U_3 are column matrices satisfying AU_1 =[(1),(0),(0)], AU_2=[(2),(3),(0)] and AU_3=[(2),(3),(1)] and U is a 3xx3 matrix when columns are U_1,U_2,U_3 now answer the following question: The sum of elements of U^-1 is: (A) -1 (B) 0 (C) 1 (D) 3

Let A=[(1,0,0),(2,1,0),(3,2,1)], it U_1, U_2 and U_3 are column matrices satisfying AU_1 =[(1),(0),(0)], AU_2=[(2),(3),(0)] and AU_3=[(2),(3),(1)] and U is a 3xx3 matrix when columns are U_1,U_2,U_3 now answer the following question: The value of |U| is (A) 3 (B) -3 (C) 3/2 (D) 2

Let A=[(1,0,0),(2,1,0),(3,2,1)], it U_1, U_2 and U_3 are column matrices satisfying AU_ =[(1),(0),(0)], AU_2=[(2),(3),(0)] and AU_3=[(2),(3),(1)] and U is a 3xx3 matrix when columns are U_1,U_2,U_3 now answer the following question: The value of determinant [(3,2,0)] I[(3),(2),(0)] is (A) 5 (B) 5/2 (C) 4 (D) 3/2

A=[(1,0,0),(2,1,0),(3,2,1)], if uu_1, uu_2 and uu_3 are columns matrices satisfying. Auu_1=[(1),(0),(0)], Auu_2=[(2),(3),(0)],Auu_3=[(2),(3),(1)] and uu is b3xx3 matrix whose columns are uu_1, uu_2, uu_3 then answer the following questions The value of |uu| is

If A= ((1,0,0),(2,1,0),(3,2,1)), U_(1), U_(2), and U_(3) are column matrices satisfying AU_(1) =((1),(0),(0)), AU_(2) = ((2),(3),(0))and AU_(3) = ((2),(3),(1)) and U is 3xx3 matrix when columns are U_(1), U_(2), U_(3) then answer the following questions The value of (3 2 0) U((3),(2),(0)) is

Let A=[[1,0,0],[2,1,0],[3,2,1]] and U_(1),U_(2),U_(3) be column matrices satisfying , AU_(1)=[[1],[0],[0]],AU_(2)=[[2],[3],[6]] .AU_(3)=[[2],[3],[1]] , is 3times3 matrix whose columns are , U_(1),U_(2),U_(3) , then |U|=,(A) 3, (B) -3, (C) 3/2 , (D) 2

Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is

Let A=((1,0,0),(2,1,0),(3,2,1)) . If u_(1) and u_(2) are column matrices such that Au_(1)=((1),(0),(0)) and Au_(2)=((0),(1),(0)) , then u_(1)+u_(2) is equal to :

OBJECTIVE RD SHARMA-MATRICES-Section I - Solved Mcqs
  1. If {:P=[(sqrt3/2,1/2),(1/2,sqrt3/2)],A=[(1,1),(0,1)]:}and Q=PAP^T," th...

    Text Solution

    |

  2. If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

    Text Solution

    |

  3. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  4. In Example 50, the sum of the elements of U^(-1) is

    Text Solution

    |

  5. If U is same as in Example 50, then the value of {:[(3,2,0)]U[(3),(2),...

    Text Solution

    |

  6. If A and B are square matrices of size nxxn such that A^2-B^2 = (A-B)(...

    Text Solution

    |

  7. If A and B are any two different square matrices of order n with A^3=B...

    Text Solution

    |

  8. Let {:A=[(0,0,-1),(0,-1,0),(-1,0,0)]:}. The only correct statement abo...

    Text Solution

    |

  9. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  10. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If A^2 = 25, the...

    Text Solution

    |

  11. If {:A=alpha[(1,1+i),(1-i,-1)]:}a in R, is a unitary matrix then alpha...

    Text Solution

    |

  12. If [(0,2b,c),(a,b,-c),(a,-b,c)] is orthogonal matrix, then the value ...

    Text Solution

    |

  13. If A=[a(ij)](nxxn), where a(ij)=i^100+j^100, then lim(ntooo) ((overse...

    Text Solution

    |

  14. If A and B are two non-singular matrices which commute, then (A(A+B)^(...

    Text Solution

    |

  15. Find the inverse of [0 1-1 4-3 4 3-3 4]

    Text Solution

    |

  16. In a 4xx4 matrix the sum of each row, column and both the main diagona...

    Text Solution

    |

  17. If A=[a(ij)](4xx4) such that a(ij)={(2; if i=j),(0; if i!=j)) then {de...

    Text Solution

    |

  18. If A is skew-symmetric matrix of order 2 and B=[(1,4),(2,9)] and c[(9...

    Text Solution

    |

  19. Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], where alpha in RR. Suppose Q=[...

    Text Solution

    |

  20. let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let ...

    Text Solution

    |