Home
Class 11
MATHS
If A=[{:(,1,a),(,0,1):}] then find under...

If `A=[{:(,1,a),(,0,1):}]` then find `underset(n-oo)(lim)(1)/(n)A^(n)`

A

`{:[(0,a),(0,0)]:}`

B

`{:[(0,0),(0,0)]:}`

C

`{:[(0,1),(0,0)]:}`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,1,a),(,0,1):}] then find lim_(n-oo) (1)/(n)A^(n)

Let f(x) = underset(n rarr oo)("Lim")( 2x^(2n) sin""(1)/(x) +x)/(1+x^(2n)) then find underset( x rarr -oo)("Lim") f(x)

underset(n to oo)lim ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1))

Prove that underset(n to oo)lim rootn(a)=1 (a gt 0 .

lim_(n rarr oo)((-1)^(n)n)/(n+1)

(i) Let h (x) = underset(x to oo)lim(x^(2n) f(x) + g(x))/(1+x^(2n)) , find h(x) in terms of f(fx) and g(x) (ii) without using L Hospital rule or series expansion for e^(x) evaluate underset(x to 0) lim (e^(x) -1-x)/x^(2) (iii) underset(n to oo) lim [ e^(1/n)/n^(2) + 2 ((e^(1/n))^(2))/n^(2) + 3. ((e^(1/n))^(3))/n^(2)+.......+ n((e^(1/n))^(n))/n^(2)] (iv) underset(x to 0)lim[ (a sin x)/x ] + [ (b tan x)/x] Where a,b are inegers and [] denotes integral part. (v) underset(x to a)lim (sinx/sina)^(1/(x-a))

Find underset(n to oo)lim ((2n^(3))/(2n^(2)+3)+(1-5n^(2))/(5n+1))

" (e) "lim_(n rarr oo)[(n!)/(n^(n))]^(1/n)

Prove that underset( n rarr oo)lim x_(n)=1, if x_(n)=(3^(n)+1)/3^(n) .

OBJECTIVE RD SHARMA-MATRICES-Exercise
  1. If A is an orthogonal matrix, then

    Text Solution

    |

  2. Let A be a non-singular square matrix of order n. Then; |adjA| = |A|^(...

    Text Solution

    |

  3. Let A=[a(ij)](nxxn) be a square matrix of order 3 such that |A|=-7 an...

    Text Solution

    |

  4. If A is a non-singlular square matrix of order n, then the rank of A i...

    Text Solution

    |

  5. If A is a matrix such that there exists a square submatrix of order r ...

    Text Solution

    |

  6. Let A be a matrix of rank r. Then,

    Text Solution

    |

  7. Let A=[a(ij)](mxxn) be a matrix such that a(ij)=1 for all I,j. Then ,

    Text Solution

    |

  8. If A is a non-zero column matrix of order mxx1 and B is a non-zero row...

    Text Solution

    |

  9. The rank of the matrix {:[(1,2,3,0),(2,4,3,2),(3,2,1,3),(6,8,7,5)]:}, ...

    Text Solution

    |

  10. If A is an invertible matrix then det(A^-1) is equal to

    Text Solution

    |

  11. If A and B are two matrices such that rank of A = m and rank of B = n...

    Text Solution

    |

  12. If {:A=[(3,4),(2,4)],B=[(-2,-2),(0,-1)]:}," then " (A+B)^(-1)=

    Text Solution

    |

  13. Let {:A=[(a,0,0),(0,a,0),(0,0,a)]:}, then A^n is equal to

    Text Solution

    |

  14. If {:A=[(costheta,sintheta),(-sintheta,costheta)]:}, " then "lim(ntooo...

    Text Solution

    |

  15. If {:A=[(1,2,x),(0,1,0),(0,0,1)]andB=[(1,-2,y),(0,1,0),(0,0,1)]:} and ...

    Text Solution

    |

  16. If A=[{:(,1,a),(,0,1):}] then find underset(n-oo)(lim)(1)/(n)A^(n)

    Text Solution

    |

  17. If the matrix {:[(a,b),(c,d)]:} is commutative with matrix {:[(1,1),(...

    Text Solution

    |

  18. If {:A=[(1,0),(k,1)]andB=[(0,0),(k,0)]:} such that A^100-I=lambdaB," ...

    Text Solution

    |

  19. If matrix A has 180 elements, then the number of possible orders of A ...

    Text Solution

    |

  20. A 3xx3 matrix A, with 1st row elements as 2,-1,-1 respectively, is mod...

    Text Solution

    |