Home
Class 11
MATHS
If the matrix {:[(a,b),(c,d)]:} is commu...

If the matrix `{:[(a,b),(c,d)]:}` is commutative with matrix `{:[(1,1),(0,1)]:}`, then

A

`a=0,b=c`

B

`b=0,c=d`

C

`c=0,d=a`

D

`d=0,a=b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the conditions under which the matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) commutes with the matrix \( B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \). This means that \( A \cdot B = B \cdot A \). ### Step-by-Step Solution: 1. **Matrix Multiplication \( A \cdot B \)**: \[ A \cdot B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \] To compute this, we multiply the rows of \( A \) by the columns of \( B \): \[ A \cdot B = \begin{pmatrix} a \cdot 1 + b \cdot 0 & a \cdot 1 + b \cdot 1 \\ c \cdot 1 + d \cdot 0 & c \cdot 1 + d \cdot 1 \end{pmatrix} = \begin{pmatrix} a & a + b \\ c & c + d \end{pmatrix} \] 2. **Matrix Multiplication \( B \cdot A \)**: \[ B \cdot A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] Again, we multiply the rows of \( B \) by the columns of \( A \): \[ B \cdot A = \begin{pmatrix} 1 \cdot a + 1 \cdot c & 1 \cdot b + 1 \cdot d \\ 0 \cdot a + 1 \cdot c & 0 \cdot b + 1 \cdot d \end{pmatrix} = \begin{pmatrix} a + c & b + d \\ c & d \end{pmatrix} \] 3. **Setting the Two Results Equal**: Since \( A \cdot B = B \cdot A \), we set the two matrices equal: \[ \begin{pmatrix} a & a + b \\ c & c + d \end{pmatrix} = \begin{pmatrix} a + c & b + d \\ c & d \end{pmatrix} \] 4. **Equating Corresponding Elements**: From the equality of the matrices, we can derive the following equations: - From the first element: \( a = a + c \) - From the second element: \( a + b = b + d \) - From the third element: \( c = c \) (This is always true) - From the fourth element: \( c + d = d \) 5. **Solving the Equations**: - From \( a = a + c \), we can simplify to \( c = 0 \). - From \( a + b = b + d \), we can simplify to \( a = d \). - From \( c + d = d \), substituting \( c = 0 \) gives \( 0 + d = d \) (This is always true). 6. **Final Conditions**: The conditions we have derived are: - \( c = 0 \) - \( a = d \) Thus, the matrix \( A \) can be expressed as: \[ A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If the matrix A = [{:(a,b),(c, d):}] is commutative on product with the matrix B = [{:(1,1),(0,1):}] , then

Matrix [{:(1,0),(0,1):}] is :

If matrix A=[(a,b),(c,d)] , then |A|^(-1) is equal to

the matrix [(0,1),(1,0)] is the matrix reflection in the line

The matrix A={:[(0,1,-1),(-1,0,1),(1,-1,0):}] is a

The matrix A= [[0,1],[1,0]] is

Matrix m ultiplication is commutative.

If the matrix P = [(7,a,4),(-1,3,b),(c, 6, 2)] is a symmetric matrix then the respective values of a ,b,c are

OBJECTIVE RD SHARMA-MATRICES-Exercise
  1. If A is an orthogonal matrix, then

    Text Solution

    |

  2. Let A be a non-singular square matrix of order n. Then; |adjA| = |A|^(...

    Text Solution

    |

  3. Let A=[a(ij)](nxxn) be a square matrix of order 3 such that |A|=-7 an...

    Text Solution

    |

  4. If A is a non-singlular square matrix of order n, then the rank of A i...

    Text Solution

    |

  5. If A is a matrix such that there exists a square submatrix of order r ...

    Text Solution

    |

  6. Let A be a matrix of rank r. Then,

    Text Solution

    |

  7. Let A=[a(ij)](mxxn) be a matrix such that a(ij)=1 for all I,j. Then ,

    Text Solution

    |

  8. If A is a non-zero column matrix of order mxx1 and B is a non-zero row...

    Text Solution

    |

  9. The rank of the matrix {:[(1,2,3,0),(2,4,3,2),(3,2,1,3),(6,8,7,5)]:}, ...

    Text Solution

    |

  10. If A is an invertible matrix then det(A^-1) is equal to

    Text Solution

    |

  11. If A and B are two matrices such that rank of A = m and rank of B = n...

    Text Solution

    |

  12. If {:A=[(3,4),(2,4)],B=[(-2,-2),(0,-1)]:}," then " (A+B)^(-1)=

    Text Solution

    |

  13. Let {:A=[(a,0,0),(0,a,0),(0,0,a)]:}, then A^n is equal to

    Text Solution

    |

  14. If {:A=[(costheta,sintheta),(-sintheta,costheta)]:}, " then "lim(ntooo...

    Text Solution

    |

  15. If {:A=[(1,2,x),(0,1,0),(0,0,1)]andB=[(1,-2,y),(0,1,0),(0,0,1)]:} and ...

    Text Solution

    |

  16. If A=[{:(,1,a),(,0,1):}] then find underset(n-oo)(lim)(1)/(n)A^(n)

    Text Solution

    |

  17. If the matrix {:[(a,b),(c,d)]:} is commutative with matrix {:[(1,1),(...

    Text Solution

    |

  18. If {:A=[(1,0),(k,1)]andB=[(0,0),(k,0)]:} such that A^100-I=lambdaB," ...

    Text Solution

    |

  19. If matrix A has 180 elements, then the number of possible orders of A ...

    Text Solution

    |

  20. A 3xx3 matrix A, with 1st row elements as 2,-1,-1 respectively, is mod...

    Text Solution

    |