Home
Class 11
MATHS
If {:X=[(3,-4),(1,-1)]:}, the value of X...

If `{:X=[(3,-4),(1,-1)]:}`, the value of `X^n` is equal to

A

`{:[(3n,-4n),(n,-n)]:}`

B

`{:[(2+n,5-n),(n,-n)]:}`

C

`{:[(3^n,(-4)^n),(1^n,(-1)^n)]:}`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( X^n \) for the matrix \( X = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \), we will calculate \( X^2 \) and \( X^3 \) to observe any patterns. ### Step 1: Calculate \( X^2 \) We start by calculating \( X^2 \) which is \( X \times X \). \[ X^2 = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \times \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \] To perform the multiplication, we calculate each element: - First row, first column: \[ 3 \times 3 + (-4) \times 1 = 9 - 4 = 5 \] - First row, second column: \[ 3 \times (-4) + (-4) \times (-1) = -12 + 4 = -8 \] - Second row, first column: \[ 1 \times 3 + (-1) \times 1 = 3 - 1 = 2 \] - Second row, second column: \[ 1 \times (-4) + (-1) \times (-1) = -4 + 1 = -3 \] Thus, we have: \[ X^2 = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} \] ### Step 2: Calculate \( X^3 \) Next, we calculate \( X^3 \) which is \( X^2 \times X \). \[ X^3 = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} \times \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \] Calculating each element: - First row, first column: \[ 5 \times 3 + (-8) \times 1 = 15 - 8 = 7 \] - First row, second column: \[ 5 \times (-4) + (-8) \times (-1) = -20 + 8 = -12 \] - Second row, first column: \[ 2 \times 3 + (-3) \times 1 = 6 - 3 = 3 \] - Second row, second column: \[ 2 \times (-4) + (-3) \times (-1) = -8 + 3 = -5 \] Thus, we have: \[ X^3 = \begin{pmatrix} 7 & -12 \\ 3 & -5 \end{pmatrix} \] ### Step 3: Identify the Pattern Now that we have \( X^2 \) and \( X^3 \), we can look for a pattern. - \( X^1 = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \) - \( X^2 = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} \) - \( X^3 = \begin{pmatrix} 7 & -12 \\ 3 & -5 \end{pmatrix} \) From the calculations, we can see that the matrices are changing in a way that suggests a recurrence relation might exist. ### Conclusion The value of \( X^n \) can be expressed in terms of its previous powers, and we can derive a general formula or continue calculating for higher powers to find a specific pattern.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Exercise|80 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If lim _(xto1)(x^(1)+x^(2)+x^(3)+"..."+x^(n)-n)/(x-1)=820,(nin N) then the value of n is equal to

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

The value of int(dx)/(x(x^(n)+1)) is equal to

If x^(4)+x^(3)+x^(2)+x+1=0,(x!=0) then value of x^(5) is equal to

Let A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x)] be a matrix. If A^(2)=A , then the value of x is equal to

The value of int_(1)^(4) |x-3|dx is equal to

If x-(1)/(x)=1, then the value of x^(3)-(1)/(x^(3)) is equal to (a)2(b)3(c)4(d)8

If y=1+(1)/(x-1)+(2x)/((x-1)(x-2))+(3x^(2))/((x-1)(x-2)(x-3)) , then the value of -9y'(4) is equal to

If int_((1)/(3))^(3)(tan^(-1)x)/(x)dx=(pi)/(8)" lnk , then value of (k)/(4) is equal to

OBJECTIVE RD SHARMA-MATRICES-Chapter Test
  1. The inverse of the matrix {:[(1,3),(3,10)]:} is equal to

    Text Solution

    |

  2. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  3. If {:X=[(3,-4),(1,-1)]:}, the value of X^n is equal to

    Text Solution

    |

  4. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  5. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  6. If {:A=[(3,1),(-1,2)]:}," then "A^(-2)=

    Text Solution

    |

  7. if |[4,x+2],[2x-3,x+1]| is a symmetric then x=

    Text Solution

    |

  8. If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

    Text Solution

    |

  9. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  10. From the matrix equation AB = AC we can conclude B = C provided that

    Text Solution

    |

  11. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  12. Let a, b, c be positive real numbers. The following system of equation...

    Text Solution

    |

  13. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  14. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  15. Consider the system of equations a1x+b1y+c1z=0 a2x+b2y+c2z=0 a3...

    Text Solution

    |

  16. The system of linear equations x+y+z=2 2x+y-z=3 3x+2y+kz=4 has a...

    Text Solution

    |

  17. If A and B are square matrices of order 3 such that absA=-1,absB=3," t...

    Text Solution

    |

  18. If the points (x1,y1),(x2,y2)and(x3,y3) are collinear, then the rank o...

    Text Solution

    |

  19. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  20. Let {:A=[(0,0,-1),(0,-1,0),(-1,0,0)]:}. The only correct statement abo...

    Text Solution

    |