Home
Class 11
MATHS
If {:A=[(3,1),(-1,2)]:}," then "A^(-2)=...

If `{:A=[(3,1),(-1,2)]:}," then "A^(-2)=`

A

`{:[(8,-5),(-5,3)]:}`

B

`{:[(8,-5),(5,3)]:}`

C

`{:[(8,-5),(-5,-3)]:}`

D

`{:[(8,5),(-5,3)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^{-2} \) for the matrix \( A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row, first column: \( 3 \cdot 3 + 1 \cdot (-1) = 9 - 1 = 8 \) - First row, second column: \( 3 \cdot 1 + 1 \cdot 2 = 3 + 2 = 5 \) - Second row, first column: \( -1 \cdot 3 + 2 \cdot (-1) = -3 - 2 = -5 \) - Second row, second column: \( -1 \cdot 1 + 2 \cdot 2 = -1 + 4 = 3 \) Thus, we have: \[ A^2 = \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} \] ### Step 2: Calculate the Determinant of \( A^2 \) To find \( A^{-2} \), we need the determinant of \( A^2 \): \[ \text{det}(A^2) = (8)(3) - (5)(-5) = 24 + 25 = 49 \] ### Step 3: Calculate the Adjoint of \( A^2 \) The adjoint of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by \( \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \). For \( A^2 = \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} \): \[ \text{adj}(A^2) = \begin{pmatrix} 3 & -5 \\ 5 & 8 \end{pmatrix} \] ### Step 4: Calculate \( A^{-2} \) Now we can find \( A^{-2} \) using the formula: \[ A^{-2} = \frac{1}{\text{det}(A^2)} \cdot \text{adj}(A^2) \] Substituting the values we found: \[ A^{-2} = \frac{1}{49} \cdot \begin{pmatrix} 3 & -5 \\ 5 & 8 \end{pmatrix} \] Thus, we have: \[ A^{-2} = \begin{pmatrix} \frac{3}{49} & \frac{-5}{49} \\ \frac{5}{49} & \frac{8}{49} \end{pmatrix} \] ### Final Answer \[ A^{-2} = \begin{pmatrix} \frac{3}{49} & \frac{-5}{49} \\ \frac{5}{49} & \frac{8}{49} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Exercise|80 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,2,3),(-1,1,2),(1,2,4)] , then (A^(2)-5A)A^(-1)=

If A=[{:(3,1,2),(1,2,-3):}]" and "B=[{:(-2," "0,4),(5,-3,2):}] , find (2A-B).

If A=[{:(3,-1),(1,-3):}]" and B"=[{:(2,1),(-1,-2):}]," then show that" : (AB)^(-1)=B^(-1)A^(-1)

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

If A=[[3, 1], [-1, 2]] and A^(2)-5A+7I=0 , then I=

IF A =[(1,2,3),(-1,1,2),( 1,2,4)]"then " (A^(2) -5A) A^(-1)=

If A=[[-1,(3)/(2)],[-(1)/(2),(1)/(2)]] then A^(2) is equal to

If A=[[2, 0, -1], [3, 1, 2], [-1, 1, 2]] , then adjA=

OBJECTIVE RD SHARMA-MATRICES-Chapter Test
  1. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  2. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  3. If {:A=[(3,1),(-1,2)]:}," then "A^(-2)=

    Text Solution

    |

  4. if |[4,x+2],[2x-3,x+1]| is a symmetric then x=

    Text Solution

    |

  5. If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

    Text Solution

    |

  6. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  7. From the matrix equation AB = AC we can conclude B = C provided that

    Text Solution

    |

  8. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  9. Let a, b, c be positive real numbers. The following system of equation...

    Text Solution

    |

  10. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  11. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  12. Consider the system of equations a1x+b1y+c1z=0 a2x+b2y+c2z=0 a3...

    Text Solution

    |

  13. The system of linear equations x+y+z=2 2x+y-z=3 3x+2y+kz=4 has a...

    Text Solution

    |

  14. If A and B are square matrices of order 3 such that absA=-1,absB=3," t...

    Text Solution

    |

  15. If the points (x1,y1),(x2,y2)and(x3,y3) are collinear, then the rank o...

    Text Solution

    |

  16. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  17. Let {:A=[(0,0,-1),(0,-1,0),(-1,0,0)]:}. The only correct statement abo...

    Text Solution

    |

  18. If {:A=[(1,2,2),(2,3,0),(0,1,2)]and adjA=[(6,-2,-6),(-4,2,x),(y,-1,-1)...

    Text Solution

    |

  19. If A is a square matrix such that {:A(adjA)=[(4,0,0),(0,4,0),(0,0,4)]:...

    Text Solution

    |

  20. If n is a natural number. Then {:[(2,-1),(3,-2)]^n:}, is

    Text Solution

    |