Home
Class 11
MATHS
If x=sum(n=0)^(oo) a^(n),y=sum(n=0)^(oo)...

If `x=sum_(n=0)^(oo) a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)(ab)^(n)`, where `a,blt1`, then

A

xyz=x+y+z

B

xz+yz=xy+z

C

xy+yz=xz+y

D

xy+xz=yz+x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between \( x \), \( y \), and \( z \) given the definitions of these sums. ### Step 1: Define the sums We have: - \( x = \sum_{n=0}^{\infty} a^n \) - \( y = \sum_{n=0}^{\infty} b^n \) - \( z = \sum_{n=0}^{\infty} (ab)^n \) ### Step 2: Use the formula for the sum of a geometric series The sum of an infinite geometric series can be expressed as: \[ \sum_{n=0}^{\infty} r^n = \frac{1}{1 - r} \quad \text{for } |r| < 1 \] Using this formula, we can express \( x \), \( y \), and \( z \) as follows: - For \( x \): \[ x = \frac{1}{1 - a} \quad \text{(since } |a| < 1\text{)} \] - For \( y \): \[ y = \frac{1}{1 - b} \quad \text{(since } |b| < 1\text{)} \] - For \( z \): \[ z = \frac{1}{1 - ab} \quad \text{(since } |ab| < 1\text{)} \] ### Step 3: Rearranging the equations From the expressions for \( x \), \( y \), and \( z \), we can rearrange them: - From \( x = \frac{1}{1 - a} \): \[ 1 - a = \frac{1}{x} \implies a = 1 - \frac{1}{x} \] - From \( y = \frac{1}{1 - b} \): \[ 1 - b = \frac{1}{y} \implies b = 1 - \frac{1}{y} \] - From \( z = \frac{1}{1 - ab} \): \[ 1 - ab = \frac{1}{z} \implies ab = 1 - \frac{1}{z} \] ### Step 4: Substitute \( a \) and \( b \) into the equation for \( ab \) Now we substitute the expressions for \( a \) and \( b \) into the equation for \( ab \): \[ ab = \left(1 - \frac{1}{x}\right)\left(1 - \frac{1}{y}\right) \] ### Step 5: Expand the product Expanding the product gives: \[ ab = 1 - \frac{1}{x} - \frac{1}{y} + \frac{1}{xy} \] ### Step 6: Set up the equation with \( z \) From our earlier expression for \( ab \): \[ 1 - ab = \frac{1}{z} \] Substituting \( ab \) from the expansion: \[ 1 - \left(1 - \frac{1}{x} - \frac{1}{y} + \frac{1}{xy}\right) = \frac{1}{z} \] This simplifies to: \[ \frac{1}{x} + \frac{1}{y} - \frac{1}{xy} = \frac{1}{z} \] ### Step 7: Rearranging to find the relationship Multiplying through by \( xyz \) gives: \[ yz + xz - xy = xyz \] Rearranging this gives us the final relationship: \[ xy + xz + yz = xyz \] ### Conclusion Thus, the relationship between \( x \), \( y \), and \( z \) is: \[ xy + xz + yz = xyz \]

To solve the problem, we need to find the relationship between \( x \), \( y \), and \( z \) given the definitions of these sums. ### Step 1: Define the sums We have: - \( x = \sum_{n=0}^{\infty} a^n \) - \( y = \sum_{n=0}^{\infty} b^n \) - \( z = \sum_{n=0}^{\infty} (ab)^n \) ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|80 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|13 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|50 Videos
  • SETS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If x = sum_(n=0)^(oo) a^(n), y=sum_(n=0)^(oo) b^(n), z = sum_(n=0)^(oo) C^(n) where a,b,c are in A.P. and |a| lt 1, |b| lt 1, |c| lt 1 , then x,y,z are in

If a=sum_(n=0)^(oo)x^(n),b=sum_(n=0)^(oo)y^(n),c=sum_(n=0)^(oo)(xy)^(n) where |x|,|y|<1 then

If a=sum_(n=0)^(oo)x^(n),b=sum_(n=0)^(oo)y^(n),c=sum_(n=0)^(oo)(xy)^(n) where |x|,|y|<1 then

If quad sum_(n=0)^(oo)a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)c^(n), wherer a,b, and c are in A.P.and |a|<,|b|<1, and |c|<1, then prove that x,y and z are in H.P.

If x=sum_(n=0)^oo a^n, y=sum_(n=0)^oo b^n, z=sum_(n=0)^oo c^n where a,b,c are in A.P and |a|<1, |b<1, |c|<1, then x,y,z are in

If x=Sigma_(n=0)^(oo) a^n,y=Sigma_(n=0)^(oo) b^n,z=Sigma_(n=0)^(oo) c^n where a, b,and c are in A.P and |a|lt 1 ,|b|lt 1 and |c|1 then prove that x,y and z are in H.P

If =sum_(n=0)^(oo)cos^(2n)theta,quad y=sum_(n=0)^(oo)sin^(2n)phi,z=sum_(n=0)^(oo)cos^(2n)theta sin^(2n)phi, where 0

If 0

OBJECTIVE RD SHARMA-SEQUENCES AND SERIES-Chapter Test
  1. If x=sum(n=0)^(oo) a^(n),y=sum(n=0)^(oo)b^(n),z=sum(n=0)^(oo)(ab)^(n),...

    Text Solution

    |

  2. Let H(n)=1+(1)/(2)+(1)/(3)+ . . . . .+(1)/(n), then the sum to n terms...

    Text Solution

    |

  3. The sum to n terms of the series 1/2+3/4+7/8+15/16+..... is given by

    Text Solution

    |

  4. If A(1),A(2) are between two numbers, then (A(1)+A(2))/(H(1)+H(2)) is ...

    Text Solution

    |

  5. if (m+1)th, (n+1)th and (r+1)th term of an AP are in GP.and m, n and r...

    Text Solution

    |

  6. Given that n arithmetic means are inserted between two sets of numbers...

    Text Solution

    |

  7. If a,b, and c are in G.P then a+b,2b and b+ c are in

    Text Solution

    |

  8. If in a progression a1, a2, a3, e t cdot,(ar-a(r+1)) bears a constant...

    Text Solution

    |

  9. If in an AP, t1 = log10 a, t(n+1) = log10 b and t(2n+1) = log10 c then...

    Text Solution

    |

  10. Find the sum of the series: 1^2-2^2+3^2-4^2+.....-2008^2+2009^2.

    Text Solution

    |

  11. If4a^(2)+9b^(2)+16c^(2)=2(3ab+6bc+4ca)," where "a,b,c are non-zero num...

    Text Solution

    |

  12. If Sn denotes the sum of n terms of an A.P. whose common difference is...

    Text Solution

    |

  13. The sides of a right angled triangle arein A.P., then they are in the...

    Text Solution

    |

  14. Find the sum of all the 11 terms of an AP whose middle most term is 30...

    Text Solution

    |

  15. The maximum sum of the series 20+19 1/3+18 2/3+ is 310 b. 300 c. 0320 ...

    Text Solution

    |

  16. If three numbers are in G.P., then the numbers obtained by adding the ...

    Text Solution

    |

  17. If p,q,r,s in N and the are four consecutive terms of an A.P., then p^...

    Text Solution

    |

  18. If x,y,z be three positive prime numbers. The progression in which sqr...

    Text Solution

    |

  19. If 1/(b-a)+1/(b-c)=1/a+1/c , then a ,b ,a n dc are in H.P. a ,b ,a n d...

    Text Solution

    |

  20. If three numbers are in H.P., then the numbers obtained by subtracting...

    Text Solution

    |

  21. The first three of four given numbers are in G.P. and their last three...

    Text Solution

    |