Home
Class 11
MATHS
If x^({(3)/(4)("log"(3)x)^(2) + ("log"(3...

If `x^({(3)/(4)("log"_(3)x)^(2) + ("log"_(3)x)-(5)/(4)}) = sqrt(3)`, then x has

A

all integral values

B

two integral values and one irrational values

C

all irrational values

D

two rational values and an irrational value

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^{\left(\frac{3}{4}(\log_3 x)^2 + \log_3 x - \frac{5}{4}\right)} = \sqrt{3} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ x^{\left(\frac{3}{4}(\log_3 x)^2 + \log_3 x - \frac{5}{4}\right)} = \sqrt{3} \] We can express \(\sqrt{3}\) as \(3^{1/2}\): \[ x^{\left(\frac{3}{4}(\log_3 x)^2 + \log_3 x - \frac{5}{4}\right)} = 3^{1/2} \] ### Step 2: Take logarithm on both sides Taking logarithm base 3 on both sides gives: \[ \log_3\left(x^{\left(\frac{3}{4}(\log_3 x)^2 + \log_3 x - \frac{5}{4}\right)}\right) = \log_3(3^{1/2}) \] Using the property of logarithms, we can simplify the left side: \[ \left(\frac{3}{4}(\log_3 x)^2 + \log_3 x - \frac{5}{4}\right) \cdot \log_3 x = \frac{1}{2} \] ### Step 3: Let \(y = \log_3 x\) Let \(y = \log_3 x\). Then, we can rewrite the equation as: \[ \left(\frac{3}{4}y^2 + y - \frac{5}{4}\right) y = \frac{1}{2} \] Expanding this gives: \[ \frac{3}{4}y^3 + y^2 - \frac{5}{4}y = \frac{1}{2} \] ### Step 4: Multiply through by 4 to eliminate fractions Multiplying the entire equation by 4 to eliminate the fractions: \[ 3y^3 + 4y^2 - 5y = 2 \] Rearranging gives: \[ 3y^3 + 4y^2 - 5y - 2 = 0 \] ### Step 5: Solve the cubic equation Now we need to solve the cubic equation \(3y^3 + 4y^2 - 5y - 2 = 0\). We can try to find rational roots using the Rational Root Theorem or synthetic division. Testing \(y = 1\): \[ 3(1)^3 + 4(1)^2 - 5(1) - 2 = 3 + 4 - 5 - 2 = 0 \] Thus, \(y = 1\) is a root. ### Step 6: Factor the cubic polynomial We can factor \(3y^3 + 4y^2 - 5y - 2\) as \((y - 1)(3y^2 + 7y + 2)\). ### Step 7: Solve the quadratic equation Now we solve the quadratic \(3y^2 + 7y + 2 = 0\) using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-7 \pm \sqrt{7^2 - 4 \cdot 3 \cdot 2}}{2 \cdot 3} = \frac{-7 \pm \sqrt{49 - 24}}{6} = \frac{-7 \pm \sqrt{25}}{6} = \frac{-7 \pm 5}{6} \] This gives us: \[ y = \frac{-2}{6} = -\frac{1}{3} \quad \text{or} \quad y = \frac{-12}{6} = -2 \] ### Step 8: Find \(x\) Recall \(y = \log_3 x\): 1. For \(y = 1\), \(x = 3^1 = 3\). 2. For \(y = -\frac{1}{3}\), \(x = 3^{-\frac{1}{3}} = \frac{1}{\sqrt[3]{3}}\). 3. For \(y = -2\), \(x = 3^{-2} = \frac{1}{9}\). ### Final Answer Thus, the values of \(x\) are: \[ x = 3, \quad x = \frac{1}{\sqrt[3]{3}}, \quad x = \frac{1}{9} \]

To solve the equation \( x^{\left(\frac{3}{4}(\log_3 x)^2 + \log_3 x - \frac{5}{4}\right)} = \sqrt{3} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ x^{\left(\frac{3}{4}(\log_3 x)^2 + \log_3 x - \frac{5}{4}\right)} = \sqrt{3} \] We can express \(\sqrt{3}\) as \(3^{1/2}\): ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|8 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Exercise|67 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

solve the equation x^((3)/(4)(log_(2)x)^(2)+log_(2)x-(5)/(4))=sqrt(2)

The equation x^((3//4) (log_(2)x)^(2) + log_(2)x - (5//4)) = sqrt(2) has:

For the equation x^((3)/(4)(log 2 x)^(2)+log 2(x)-(5)/(4))=sqrt(2) which one of the following is not true?

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

The equation x^(3/4(log_(2)x)^(2)+log_(2)x-5/4)=sqrt(2) has

The equation x^([(log_(3)x)^(2) - 9/2 log_(3) x + 5] ) = 3sqrt3 has

If "log"_(x){"log"_(4)("log"_(x)(5x^(2) +4x^(3)))} =0 , then

The equation x^((3)/4 (log_2x)^2+log_2 x -(5)/(4))=sqrt(2) has :

OBJECTIVE RD SHARMA-LOGARITHMS-Section I - Solved Mcqs
  1. If x1,x2,x3,... are positive numbers in G.P then logxn, logx(n+1), log...

    Text Solution

    |

  2. If log(cosx) sinx>=2 and x in [0,3pi] then sinx lies in the interval

    Text Solution

    |

  3. The number of values of x in [0,npi] ,n in Z that satisfy the equati...

    Text Solution

    |

  4. If 9^("log"3("log"(2) x)) = "log"(2)x - ("log"(2)x)^(2) + 1, then x =

    Text Solution

    |

  5. If x^({(3)/(4)("log"(3)x)^(2) + ("log"(3)x)-(5)/(4)}) = sqrt(3), then ...

    Text Solution

    |

  6. If "log"("cos"x) "tan" x + "log"("sin"x) "cot" x =0, then x =

    Text Solution

    |

  7. The number of solutions of the equation x^("log"sqrt(x)^(2x)) =4 is

    Text Solution

    |

  8. If "log"(sqrt(3))("sin" x + 2sqrt(2) "cos"x) ge 2, -2pi le x le 2 pi, ...

    Text Solution

    |

  9. The least value of the expression 2(log)(10)x-(log)x(0, 01)dot for x >...

    Text Solution

    |

  10. The number of zeroes coming immediately after the decimal point in the...

    Text Solution

    |

  11. If log(1/sqrt2) sinx> 0 ,x in [0,4pi], then the number values of x wh...

    Text Solution

    |

  12. The value of sum(r=1)^(89)log(10)(tan((pir)/180)) is equal to

    Text Solution

    |

  13. If [x] denotes the greatest integer less than or equal to x, then ["lo...

    Text Solution

    |

  14. If a(n) gt a(n-1) gt …. gt a(2) gt a(1) gt 1, then the value of "log"(...

    Text Solution

    |

  15. If n=1999! then sum(x=1)^(1999) logn x=

    Text Solution

    |

  16. Let a=(log)3(log)3 2. An integer k satisfying 1<2^(-k+3^((-a)))<2, mus...

    Text Solution

    |

  17. If log(10) (x^3+y^3)-log(10) (x^2+y^2-xy) <=2 then the minimum value o...

    Text Solution

    |

  18. The value of 6+log(3/2)(1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)sq...

    Text Solution

    |

  19. If 3^x = 4^(x-1) then x can not be equal to

    Text Solution

    |

  20. For the system of equation "log"(10) (x^(3)-x^(2)) = "log"(5)y^(2) ...

    Text Solution

    |