Home
Class 11
MATHS
If y = 2^(1//"log"(x)8), then x equal to...

If `y = 2^(1//"log"_(x)8)`, then x equal to

A

y

B

`y^(2)`

C

`y^(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( y = 2^{\frac{1}{\log_x 8}} \) for \( x \), we can follow these steps: ### Step 1: Rewrite the logarithm Using the change of base formula for logarithms, we can rewrite \( \log_x 8 \) as: \[ \log_x 8 = \frac{\log 8}{\log x} \] Thus, we can express \( y \) as: \[ y = 2^{\frac{1}{\frac{\log 8}{\log x}}} = 2^{\frac{\log x}{\log 8}} \] ### Step 2: Simplify the exponent Now we can rewrite the expression: \[ y = 2^{\log_x 8} = (2^{\log 8})^{\frac{1}{\log x}} \] Using the property \( a^{\log_b c} = c^{\log_b a} \), we can express \( 2^{\log 8} \): \[ 2^{\log 8} = 8^{\log 2} \] Thus, we have: \[ y = 8^{\frac{\log 2}{\log x}} \] ### Step 3: Set up the equation Now we can equate the two expressions: \[ y = 8^{\frac{\log 2}{\log x}} \] Taking the logarithm of both sides gives: \[ \log y = \frac{\log 2}{\log x} \cdot \log 8 \] ### Step 4: Solve for \( \log x \) Rearranging the equation to isolate \( \log x \): \[ \log x = \frac{\log 2 \cdot \log 8}{\log y} \] ### Step 5: Substitute \( \log 8 \) Since \( \log 8 = 3 \log 2 \), we can substitute: \[ \log x = \frac{\log 2 \cdot 3 \log 2}{\log y} = \frac{3 (\log 2)^2}{\log y} \] ### Step 6: Solve for \( x \) Now, exponentiating both sides gives: \[ x = 10^{\frac{3 (\log 2)^2}{\log y}} \] This is the value of \( x \) in terms of \( y \). ### Final Answer The final expression for \( x \) is: \[ x = 2^{3} = 8 \quad \text{(if } y = 2 \text{)} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|8 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|1 Videos
  • MATRICES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If y = x^(log x) , then (dy)/(dx) equals

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

If y=x^3(log)_e(1+x) , then y'(0) is equal to.......

If y=a^(((1)/(1-log_(a)x)))" and "z=a^(((1)/(1-log_(a)y))) , then x is equal to

If x^((3)/(2)("log"_(2) x-3)) = (1)/(8) , then x equals to

If log_(2)(4^(x+1)+4)log_(2)(4^(x)+1)=log_(2)(8) then x equals what

If y="log"_(2)"log"_(2)(x) , then (dy)/(dx) is equal to

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals