Home
Class 12
MATHS
lim(xrarr1^+)(sqrt(x^2-1)+sqrt(x-1))/(sq...

`lim_(xrarr1^+)(sqrt(x^2-1)+sqrt(x-1))/(sqrt(x^2-1))=`

A

`(1)/(2)`

B

`sqrt(2)+1`

C

1

D

`1+(1)/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1^+} \frac{\sqrt{x^2 - 1} + \sqrt{x - 1}}{\sqrt{x^2 - 1}} \), we will follow these steps: ### Step 1: Substitute the limit First, we substitute \( x = 1 \) directly into the expression to see what we get: \[ \sqrt{1^2 - 1} + \sqrt{1 - 1} = \sqrt{0} + \sqrt{0} = 0 \] And for the denominator: \[ \sqrt{1^2 - 1} = \sqrt{0} = 0 \] This gives us the indeterminate form \( \frac{0}{0} \). ### Step 2: Simplify the expression To resolve the indeterminate form, we can simplify the expression. We will divide the numerator and the denominator by \( \sqrt{x^2 - 1} \): \[ \lim_{x \to 1^+} \frac{\sqrt{x^2 - 1}}{\sqrt{x^2 - 1}} + \frac{\sqrt{x - 1}}{\sqrt{x^2 - 1}} = \lim_{x \to 1^+} 1 + \frac{\sqrt{x - 1}}{\sqrt{x^2 - 1}} \] ### Step 3: Analyze the second term Next, we need to analyze the limit of the second term \( \frac{\sqrt{x - 1}}{\sqrt{x^2 - 1}} \). We can rewrite \( \sqrt{x^2 - 1} \) as \( \sqrt{(x - 1)(x + 1)} \): \[ \lim_{x \to 1^+} \frac{\sqrt{x - 1}}{\sqrt{(x - 1)(x + 1)}} = \lim_{x \to 1^+} \frac{\sqrt{x - 1}}{\sqrt{x - 1} \cdot \sqrt{x + 1}} = \lim_{x \to 1^+} \frac{1}{\sqrt{x + 1}} \] ### Step 4: Substitute \( x = 1 \) Now we can substitute \( x = 1 \) into the simplified expression: \[ \lim_{x \to 1^+} \frac{1}{\sqrt{1 + 1}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \] ### Step 5: Combine the results Now we combine the results from Step 2 and Step 4: \[ \lim_{x \to 1^+} \left( 1 + \frac{1}{\sqrt{2}} \right) = 1 + \frac{1}{\sqrt{2}} \] ### Final Answer Thus, the final limit is: \[ \lim_{x \to 1^+} \frac{\sqrt{x^2 - 1} + \sqrt{x - 1}}{\sqrt{x^2 - 1}} = 1 + \frac{1}{\sqrt{2}} \]

To solve the limit \( \lim_{x \to 1^+} \frac{\sqrt{x^2 - 1} + \sqrt{x - 1}}{\sqrt{x^2 - 1}} \), we will follow these steps: ### Step 1: Substitute the limit First, we substitute \( x = 1 \) directly into the expression to see what we get: \[ \sqrt{1^2 - 1} + \sqrt{1 - 1} = \sqrt{0} + \sqrt{0} = 0 \] And for the denominator: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|101 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

lim_(xrarr oo)(sqrt(3x^2-1)+sqrt(2x^2-1))/(4x+3)=

lim_(x rarr0)(sqrt(x^(2)+1)-1)/(sqrt(x^(2)+9)-3)

Evaluate the following limits: lim_(xrarr0)((sqrt(1+x^(2))-sqrt(1+x))/(sqrt(1+x^(3))-sqrt(1+x)))

lim_(xrarr+1) (sqrt(4+x)-sqrt(5))/(x-1)

lim_(x rarr0)(sqrt(1+x^(2))-sqrt(1+x))/(sqrt(1+x^(3))-sqrt(1+x))

The value of lim_(xrarr2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2)) is

lim_(x rarr 1)(1-sqrt(x))/(1 + sqrt(x))

lim_(x rarr1)(sqrt(x^(2)+8)-sqrt(10-x^(2)))/(sqrt(x^(2)+3)-sqrt(5-x^(2)))=

lim_(x rarr oo)((sqrt(x^(2)+5)-sqrt(x^(2)-3))/(sqrt(x^(2)+3)-sqrt(x^(2)+1)))

OBJECTIVE RD SHARMA-LIMITS-Chapter Test
  1. lim(xrarr1^+)(sqrt(x^2-1)+sqrt(x-1))/(sqrt(x^2-1))=

    Text Solution

    |

  2. Let f(x)={(x^2,x in Z),((k(x^2-4))/(2-x),x notinZ):} Then, lim(xrarr2...

    Text Solution

    |

  3. If Sn=sum(k=1)^n ak and lim(n->oo)an=a , then lim(n->oo)(S(n+1)-Sn)/sq...

    Text Solution

    |

  4. If a1=1a n da(n+1)=(4+3an)/(3+2an),ngeq1,a n dif("lim")(nvecoo)an=a , ...

    Text Solution

    |

  5. If x1=3 and x +1= sqrt(2+xn), n ge 1, then lim(nto oo) xn is equal to

    Text Solution

    |

  6. The value of lim(xrarr0) (sqrt(1-cosx^2))/(1-cosx), is

    Text Solution

    |

  7. The value of lim(xrarr oo) ((pi)/(4x))sin ((pi)/(4x)), is

    Text Solution

    |

  8. Evaluate ("lim")(nvecoo){cos(x/2)cos(x/4)cos(x/8) cos(x/(2^n))}

    Text Solution

    |

  9. If f(x) is the integral of (2 sin x-sin 2 x)/(x^(3)), "where x" ne 0, ...

    Text Solution

    |

  10. The value of lim(x->0^+) x^m (logx)^n, m,n in N is

    Text Solution

    |

  11. The value of lim(xrarroo) (logx)/(x^n), n gt 0, is

    Text Solution

    |

  12. The value of lim(x->a)log(x-a)/(log(e^x-e^a) is

    Text Solution

    |

  13. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  14. Let lt an gt be a sequence such that a1=1 and an+1 =cos an, n gt 1 . ...

    Text Solution

    |

  15. If f(a) =2, f'(a)=1, g(a) =-1 , g' (a)=2, then the value of lim(xrarr ...

    Text Solution

    |

  16. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  17. If Al=(x-ai)/(|x-ai|)30, i=1,2,..., n and if a1 lt a2 lt a3lt ..... lt...

    Text Solution

    |

  18. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  19. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  20. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  21. lim(xrarroo) sqrt((x+sinx)/(x-cos x))=

    Text Solution

    |