Home
Class 12
MATHS
lim(x to pi//6) (2sin^2x+sinx-1)/(2sin^2...

`lim_(x to pi//6) (2sin^2x+sinx-1)/(2sin^2x-3sinx+1)=`

A

3

B

-3

C

6

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{6}} \frac{2\sin^2 x + \sin x - 1}{2\sin^2 x - 3\sin x + 1} \), we will follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{6} \) First, let's substitute \( x = \frac{\pi}{6} \) into the expression to check if we get a determinate form. \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] Now, substituting into the numerator and denominator: **Numerator:** \[ 2\sin^2\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{6}\right) - 1 = 2\left(\frac{1}{2}\right)^2 + \frac{1}{2} - 1 = 2 \cdot \frac{1}{4} + \frac{1}{2} - 1 = \frac{1}{2} + \frac{1}{2} - 1 = 0 \] **Denominator:** \[ 2\sin^2\left(\frac{\pi}{6}\right) - 3\sin\left(\frac{\pi}{6}\right) + 1 = 2\left(\frac{1}{2}\right)^2 - 3\left(\frac{1}{2}\right) + 1 = 2 \cdot \frac{1}{4} - \frac{3}{2} + 1 = \frac{1}{2} - \frac{3}{2} + 1 = 0 \] Since both the numerator and denominator are 0, we have an indeterminate form \( \frac{0}{0} \). ### Step 2: Factor the numerator and denominator Next, we need to factor both the numerator and the denominator. **Numerator:** \[ 2\sin^2 x + \sin x - 1 = (2\sin x - 1)(\sin x + 1) \] **Denominator:** \[ 2\sin^2 x - 3\sin x + 1 = (2\sin x - 1)(\sin x - 1) \] ### Step 3: Rewrite the limit Now we can rewrite the limit: \[ \lim_{x \to \frac{\pi}{6}} \frac{(2\sin x - 1)(\sin x + 1)}{(2\sin x - 1)(\sin x - 1)} \] ### Step 4: Cancel common factors We can cancel \( (2\sin x - 1) \) from the numerator and denominator (as long as \( \sin x \neq \frac{1}{2} \)): \[ \lim_{x \to \frac{\pi}{6}} \frac{\sin x + 1}{\sin x - 1} \] ### Step 5: Substitute \( x = \frac{\pi}{6} \) again Now, we substitute \( x = \frac{\pi}{6} \) again: \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] So we have: \[ \frac{\frac{1}{2} + 1}{\frac{1}{2} - 1} = \frac{\frac{3}{2}}{-\frac{1}{2}} = \frac{3}{2} \cdot -2 = -3 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to \frac{\pi}{6}} \frac{2\sin^2 x + \sin x - 1}{2\sin^2 x - 3\sin x + 1} = -3 \]

To solve the limit \( \lim_{x \to \frac{\pi}{6}} \frac{2\sin^2 x + \sin x - 1}{2\sin^2 x - 3\sin x + 1} \), we will follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{6} \) First, let's substitute \( x = \frac{\pi}{6} \) into the expression to check if we get a determinate form. \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|101 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits: lim_(x to(pi)/(6))(2sin^(2)x+sinx-1)/(2sin^(2)x-3sinx+1)

What is lim_(xto(pi)/(6)) (2sin^(2)x+sinx-1)/(sin^(2)x-3sinx+1) to?

Evaluate the following limits: lim_(xrarr pi//6)((2sin^(2)x+sinx-1))/((2sin^(2)x-3sinx+1))

The value of the limit lim_(x to pi/2) (4sqrt2)(sin3x +sinx)/((2 sin 2x sin. (3x)/2 +cos. (5x)/2)-(sqrt(2)+sqrt(2)cos 2x +cos. (3x)/2)) is _______

lim_(x to 0) (x^3 sin(1/x))/sinx

lim_(x rarr pi/2)(1-(sinx)^(sinx))/(cos^2x)=

OBJECTIVE RD SHARMA-LIMITS-Chapter Test
  1. lim(x to pi//6) (2sin^2x+sinx-1)/(2sin^2x-3sinx+1)=

    Text Solution

    |

  2. Let f(x)={(x^2,x in Z),((k(x^2-4))/(2-x),x notinZ):} Then, lim(xrarr2...

    Text Solution

    |

  3. If Sn=sum(k=1)^n ak and lim(n->oo)an=a , then lim(n->oo)(S(n+1)-Sn)/sq...

    Text Solution

    |

  4. If a1=1a n da(n+1)=(4+3an)/(3+2an),ngeq1,a n dif("lim")(nvecoo)an=a , ...

    Text Solution

    |

  5. If x1=3 and x +1= sqrt(2+xn), n ge 1, then lim(nto oo) xn is equal to

    Text Solution

    |

  6. The value of lim(xrarr0) (sqrt(1-cosx^2))/(1-cosx), is

    Text Solution

    |

  7. The value of lim(xrarr oo) ((pi)/(4x))sin ((pi)/(4x)), is

    Text Solution

    |

  8. Evaluate ("lim")(nvecoo){cos(x/2)cos(x/4)cos(x/8) cos(x/(2^n))}

    Text Solution

    |

  9. If f(x) is the integral of (2 sin x-sin 2 x)/(x^(3)), "where x" ne 0, ...

    Text Solution

    |

  10. The value of lim(x->0^+) x^m (logx)^n, m,n in N is

    Text Solution

    |

  11. The value of lim(xrarroo) (logx)/(x^n), n gt 0, is

    Text Solution

    |

  12. The value of lim(x->a)log(x-a)/(log(e^x-e^a) is

    Text Solution

    |

  13. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  14. Let lt an gt be a sequence such that a1=1 and an+1 =cos an, n gt 1 . ...

    Text Solution

    |

  15. If f(a) =2, f'(a)=1, g(a) =-1 , g' (a)=2, then the value of lim(xrarr ...

    Text Solution

    |

  16. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  17. If Al=(x-ai)/(|x-ai|)30, i=1,2,..., n and if a1 lt a2 lt a3lt ..... lt...

    Text Solution

    |

  18. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  19. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  20. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  21. lim(xrarroo) sqrt((x+sinx)/(x-cos x))=

    Text Solution

    |