Home
Class 12
MATHS
The value of sqrt(2)int(sinx)/(sin(x-(pi...

The value of `sqrt(2)int(sinx)/(sin(x-(pi)/(4)))dx` , is

A

`x+log|sin(x-(pi)/(4))|+C`

B

`x-log|cos(x-(pi)/(4))|+C`

C

`x+log|cos(x-(pi)/(4))|+C`

D

`x-log|sin(x-(pi)/(4))|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \sqrt{2} \int \frac{\sin x}{\sin\left(x - \frac{\pi}{4}\right)} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \sqrt{2} \int \frac{\sin x}{\sin\left(x - \frac{\pi}{4}\right)} \, dx \] ### Step 2: Use the Sine Addition Formula We can express \( \sin\left(x - \frac{\pi}{4}\right) \) using the sine addition formula: \[ \sin\left(x - \frac{\pi}{4}\right) = \sin x \cos\left(\frac{\pi}{4}\right) - \cos x \sin\left(\frac{\pi}{4}\right) \] Since \( \cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \), we have: \[ \sin\left(x - \frac{\pi}{4}\right) = \sin x \cdot \frac{1}{\sqrt{2}} - \cos x \cdot \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}(\sin x - \cos x) \] ### Step 3: Substitute into the Integral Now we substitute this back into the integral: \[ \sqrt{2} \int \frac{\sin x}{\frac{1}{\sqrt{2}}(\sin x - \cos x)} \, dx = \sqrt{2} \cdot \sqrt{2} \int \frac{\sin x}{\sin x - \cos x} \, dx = 2 \int \frac{\sin x}{\sin x - \cos x} \, dx \] ### Step 4: Simplify the Integral Now, we can simplify the integral: \[ 2 \int \frac{\sin x}{\sin x - \cos x} \, dx \] We can rewrite this as: \[ 2 \int \left(1 + \frac{\cos x}{\sin x - \cos x}\right) \, dx \] ### Step 5: Separate the Integral This gives us two integrals: \[ 2 \int 1 \, dx + 2 \int \frac{\cos x}{\sin x - \cos x} \, dx \] The first integral is straightforward: \[ 2x \] ### Step 6: Solve the Second Integral For the second integral, we can use substitution. Let: \[ u = \sin x - \cos x \implies du = (\cos x + \sin x) \, dx \] Thus, we can express \( dx \) in terms of \( du \): \[ dx = \frac{du}{\cos x + \sin x} \] We can rewrite \( \cos x + \sin x \) in terms of \( u \) as well, but for simplicity, we can just integrate directly: \[ 2 \int \frac{\cos x}{u} \frac{du}{\cos x + \sin x} \] ### Step 7: Final Integration After integrating, we find: \[ 2x + \log|\sin x - \cos x| + C \] ### Step 8: Combine Results Thus, the final result of the integral is: \[ \sqrt{2} \left( x + \log|\sin(x - \frac{\pi}{4})| + C \right) \] ### Final Answer So, the value of the integral is: \[ x + \log|\sin(x - \frac{\pi}{4})| + C \]

To solve the integral \( \sqrt{2} \int \frac{\sin x}{\sin\left(x - \frac{\pi}{4}\right)} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \sqrt{2} \int \frac{\sin x}{\sin\left(x - \frac{\pi}{4}\right)} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

The value of sqrt(2)int(sin xdx)/(sin(x-(pi)/(4)))

int(sinx)/(sin(x-(pi)/(4)))dx " is equal to "

int(sinx-cosx)/(sqrt(sin2x-(1)/(2)))dx=

The value of int_(0)^(pi/2)(sin^(3)x)/(sinx+cos x) dx is

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

The value of int_(-pi//2)^(pi//2)( 3sinx+sin^(3)x)dx is

OBJECTIVE RD SHARMA-INDEFINITE INTEGRALS-Chapter Test
  1. The value of sqrt(2)int(sinx)/(sin(x-(pi)/(4)))dx , is

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int (xtan^(-1)x)/sqrt(1+x^2) dx = sqrt(1+x^2)f(x)+Aln|x+sqrt(x^2+1)...

    Text Solution

    |

  4. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  5. If int(xe^x)/sqrt(1+e^x)dx=f(x)sqrt(1+e^x)-2logg(x)+c, then

    Text Solution

    |

  6. The value of the integral int (cos^3x+cos^5 x)/(sin^2 x+sin^4 x) dx is...

    Text Solution

    |

  7. If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , t...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of inte^(secx)*sec^3x(sin^2x+cosx+sinx+sinxcosx)dx is

    Text Solution

    |

  11. int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/...

    Text Solution

    |

  12. Let f(x)=x/((1+x^n)^(1/ n)) for ngeq2 and g(x)=(f(ofo ...of)(x) Then ...

    Text Solution

    |

  13. The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

    Text Solution

    |

  14. Evaluate: inte^x(1+n x^(n-1)-x^(2n))/((1-x^n)sqrt(1-x^(2n)))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out A & B

    Text Solution

    |

  18. What is int (x^(4) -1)/(x^(2) sqrt(x^(4) + x^(2) + 1)) dx equal to ?

    Text Solution

    |

  19. int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx is equal to

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |