Home
Class 12
MATHS
The value of int(1)/(x+sqrt(x-1))dx, is...

The value of `int(1)/(x+sqrt(x-1))dx`, is

A

`log(x+sqrt(x-1))+sin^(-1)sqrt((x-1)/(x))+C`

B

`log(x+sqrt(x-1))+C`

C

`log(x+sqrt(x-1))-(2)/(3)tan^(-1)((2sqrtx-1+1)/(sqrt(3)))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{x + \sqrt{x-1}} \, dx \), we will use a substitution method. Let's go through the steps: ### Step 1: Substitution Let \( t^2 = x - 1 \). Then, we have: \[ x = t^2 + 1 \] Differentiating both sides gives: \[ dx = 2t \, dt \] ### Step 2: Substitute in the Integral Now, substitute \( x \) and \( dx \) into the integral: \[ \int \frac{1}{(t^2 + 1) + \sqrt{t^2}} \cdot 2t \, dt = \int \frac{2t}{t^2 + 1 + t} \, dt \] This simplifies to: \[ \int \frac{2t}{t^2 + t + 1} \, dt \] ### Step 3: Split the Integral We can split the integral into two parts: \[ \int \frac{2t + 1 - 1}{t^2 + t + 1} \, dt = \int \frac{2t + 1}{t^2 + t + 1} \, dt - \int \frac{1}{t^2 + t + 1} \, dt \] ### Step 4: First Integral For the first integral \( \int \frac{2t + 1}{t^2 + t + 1} \, dt \), we can use the substitution \( u = t^2 + t + 1 \), then \( du = (2t + 1) \, dt \): \[ \int \frac{du}{u} = \ln |u| + C_1 = \ln |t^2 + t + 1| + C_1 \] ### Step 5: Second Integral For the second integral \( \int \frac{1}{t^2 + t + 1} \, dt \), we can complete the square: \[ t^2 + t + 1 = \left(t + \frac{1}{2}\right)^2 + \frac{3}{4} \] Thus, we have: \[ \int \frac{1}{\left(t + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \, dt \] This integral can be solved using the formula: \[ \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C \] Applying this gives: \[ \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{2t + 1}{\sqrt{3}}\right) + C_2 \] ### Step 6: Combine Results Combining the results from both integrals, we have: \[ \int \frac{1}{x + \sqrt{x-1}} \, dx = \ln |t^2 + t + 1| - \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{2t + 1}{\sqrt{3}}\right) + C \] ### Step 7: Back Substitute Now, substitute back \( t = \sqrt{x - 1} \): \[ \int \frac{1}{x + \sqrt{x-1}} \, dx = \ln |(\sqrt{x - 1})^2 + \sqrt{x - 1} + 1| - \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{2\sqrt{x - 1} + 1}{\sqrt{3}}\right) + C \] This simplifies to: \[ \ln |x + \sqrt{x - 1}| - \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{2\sqrt{x - 1} + 1}{\sqrt{3}}\right) + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{1}{x + \sqrt{x-1}} \, dx = \ln |x + \sqrt{x - 1}| - \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{2\sqrt{x - 1} + 1}{\sqrt{3}}\right) + C \]

To solve the integral \( \int \frac{1}{x + \sqrt{x-1}} \, dx \), we will use a substitution method. Let's go through the steps: ### Step 1: Substitution Let \( t^2 = x - 1 \). Then, we have: \[ x = t^2 + 1 \] Differentiating both sides gives: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(x)(1+x))dx

The value of int(dx)/sqrt(1-x) is

The value of int(dx)/(x(sqrt(1-x^(3)))) is equal to

int(1/sqrt(x)-sqrt(x))dx

int(1)/(sqrt(x)+sqrt(x-1))dx

int(x-1)sqrt(x+1)dx

int(dx)/((x+1)sqrt(x-1))=

The value of int(sqrt(1+x))/(x)dx , is

OBJECTIVE RD SHARMA-INDEFINITE INTEGRALS-Chapter Test
  1. The value of int(1)/(x+sqrt(x-1))dx, is

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int (xtan^(-1)x)/sqrt(1+x^2) dx = sqrt(1+x^2)f(x)+Aln|x+sqrt(x^2+1)...

    Text Solution

    |

  4. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  5. If int(xe^x)/sqrt(1+e^x)dx=f(x)sqrt(1+e^x)-2logg(x)+c, then

    Text Solution

    |

  6. The value of the integral int (cos^3x+cos^5 x)/(sin^2 x+sin^4 x) dx is...

    Text Solution

    |

  7. If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , t...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of inte^(secx)*sec^3x(sin^2x+cosx+sinx+sinxcosx)dx is

    Text Solution

    |

  11. int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/...

    Text Solution

    |

  12. Let f(x)=x/((1+x^n)^(1/ n)) for ngeq2 and g(x)=(f(ofo ...of)(x) Then ...

    Text Solution

    |

  13. The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

    Text Solution

    |

  14. Evaluate: inte^x(1+n x^(n-1)-x^(2n))/((1-x^n)sqrt(1-x^(2n)))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out A & B

    Text Solution

    |

  18. What is int (x^(4) -1)/(x^(2) sqrt(x^(4) + x^(2) + 1)) dx equal to ?

    Text Solution

    |

  19. int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx is equal to

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |