Home
Class 12
MATHS
int(1)/(sin x + cos x +sqrt(2))dx equals...

`int(1)/(sin x + cos x +sqrt(2))dx` equals

A

`-(1)/(sqrt(2))tan ((x)/(2)+(pi)/(8))+C`

B

`(1)/(sqrt(2))tan((x)/(2)+(pi)/(8))`

C

`(1)/(sqrt(2))cot ((x)/(2)+(pi)/(8))`

D

`-(1)/(sqrt(2))cot ((x)/(2)+(pi)/(8))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sin x + \cos x + \sqrt{2}} \, dx \), we can follow these steps: ### Step 1: Simplify the Denominator We start by rewriting the denominator: \[ \sin x + \cos x + \sqrt{2} \] We can factor out \( \sqrt{2} \) from the terms involving sine and cosine: \[ = \sqrt{2} \left( \frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}} + 1 \right) \] This allows us to rewrite the integral: \[ \int \frac{1}{\sin x + \cos x + \sqrt{2}} \, dx = \int \frac{1}{\sqrt{2}} \cdot \frac{1}{\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}} + 1} \, dx \] ### Step 2: Use Trigonometric Identities Notice that \( \frac{\sin x}{\sqrt{2}} = \sin\left(x + \frac{\pi}{4}\right) \) and \( \frac{\cos x}{\sqrt{2}} = \cos\left(x + \frac{\pi}{4}\right) \). Therefore, we can rewrite: \[ \frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}} = \sin\left(x + \frac{\pi}{4}\right) \] Thus, our integral becomes: \[ \int \frac{1}{\sqrt{2}} \cdot \frac{1}{\sin\left(x + \frac{\pi}{4}\right) + 1} \, dx \] ### Step 3: Substitute and Simplify Now, we can use the identity \( 1 - \sin\left(x + \frac{\pi}{4}\right) = \frac{1 - \sin\left(x + \frac{\pi}{4}\right)}{1 - \sin\left(x + \frac{\pi}{4}\right)} \): \[ \int \frac{1}{\sqrt{2}} \cdot \frac{1 - \sin\left(x + \frac{\pi}{4}\right)}{(1 - \sin\left(x + \frac{\pi}{4}\right))} \, dx \] ### Step 4: Use the Integral of \( \frac{1}{1 - \sin x} \) The integral \( \int \frac{1}{1 - \sin x} \, dx \) can be solved using the identity: \[ 1 - \sin x = \frac{1 - \sin x}{\cos^2\left(\frac{x}{2}\right)} \] Thus, we can rewrite our integral: \[ \int \frac{1}{\sqrt{2}} \cdot \frac{1}{1 - \sin\left(x + \frac{\pi}{4}\right)} \, dx \] ### Step 5: Solve the Integral Using the integral formula, we find: \[ \int \frac{1}{1 - \sin x} \, dx = -\cot\left(\frac{x}{2} + \frac{\pi}{8}\right) + C \] Thus, we have: \[ \int \frac{1}{\sqrt{2}} \cdot \frac{1}{1 - \sin\left(x + \frac{\pi}{4}\right)} \, dx = -\frac{1}{\sqrt{2}} \cot\left(\frac{x + \frac{\pi}{4}}{2}\right) + C \] ### Final Answer Therefore, the final answer is: \[ -\frac{1}{\sqrt{2}} \cot\left(\frac{x}{2} + \frac{\pi}{8}\right) + C \]

To solve the integral \( \int \frac{1}{\sin x + \cos x + \sqrt{2}} \, dx \), we can follow these steps: ### Step 1: Simplify the Denominator We start by rewriting the denominator: \[ \sin x + \cos x + \sqrt{2} \] We can factor out \( \sqrt{2} \) from the terms involving sine and cosine: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

int (dx) / (sin x-cos x + sqrt (2)) equals

int((sin x+cos x)/(sqrt(sin2x))dx

int(1)/(sin x sqrt(sin x cos x))dx

int(1)/(sin x sqrt(sin x cos x))dx=

int(1)/(sin x sqrt(sin x cos x))dx=

int (1) / (cos x + sqrt (3) sin x) equals

int (1) / (cos x + sqrt (3) sin x) dx equals

int (dx) / (sin ^ (2) x cos ^ (2) x) equals

int(dx)/(cos x + sqrt(3) sin x) equals :

OBJECTIVE RD SHARMA-INDEFINITE INTEGRALS-Chapter Test
  1. int(1)/(sin x + cos x +sqrt(2))dx equals

    Text Solution

    |

  2. The integral int (2x-3)/(x^2+x+1)^2 .dx is equal to

    Text Solution

    |

  3. If int (xtan^(-1)x)/sqrt(1+x^2) dx = sqrt(1+x^2)f(x)+Aln|x+sqrt(x^2+1)...

    Text Solution

    |

  4. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  5. If int(xe^x)/sqrt(1+e^x)dx=f(x)sqrt(1+e^x)-2logg(x)+c, then

    Text Solution

    |

  6. The value of the integral int (cos^3x+cos^5 x)/(sin^2 x+sin^4 x) dx is...

    Text Solution

    |

  7. If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , t...

    Text Solution

    |

  8. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  9. If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

    Text Solution

    |

  10. The value of inte^(secx)*sec^3x(sin^2x+cosx+sinx+sinxcosx)dx is

    Text Solution

    |

  11. int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/...

    Text Solution

    |

  12. Let f(x)=x/((1+x^n)^(1/ n)) for ngeq2 and g(x)=(f(ofo ...of)(x) Then ...

    Text Solution

    |

  13. The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

    Text Solution

    |

  14. Evaluate: inte^x(1+n x^(n-1)-x^(2n))/((1-x^n)sqrt(1-x^(2n)))dx

    Text Solution

    |

  15. int(xcosx+1)/(sqrt(2x^(3)e^(sinx)+x^(2)))dx

    Text Solution

    |

  16. int(x^(3))/((1+x^(2))^(1//3))dx is equal to

    Text Solution

    |

  17. int sinx/sin(x-alpha)dx=Ax+B log (sin(x-alpha))+C then find out A & B

    Text Solution

    |

  18. What is int (x^(4) -1)/(x^(2) sqrt(x^(4) + x^(2) + 1)) dx equal to ?

    Text Solution

    |

  19. int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx is equal to

    Text Solution

    |

  20. int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  21. int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

    Text Solution

    |