Home
Class 12
MATHS
inte^(x)(1-cotx+cot^(2)x)dx=...

`inte^(x)(1-cotx+cot^(2)x)dx=`

A

`e^(x)cotx+C`

B

`-e^(x)cotx+C`

C

`e^(x)"cosec "x+C`

D

`-e^(x)"cosec " x+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x (1 - \cot x + \cot^2 x) \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start with the expression inside the integral: \[ 1 - \cot x + \cot^2 x \] We can recognize that: \[ \cot^2 x + 1 = \csc^2 x \] Thus, we can rewrite the integrand: \[ 1 - \cot x + \cot^2 x = 1 + \cot^2 x - \cot x = \csc^2 x - \cot x \] So, the integral becomes: \[ \int e^x (\csc^2 x - \cot x) \, dx \] ### Step 2: Separate the integral We can separate the integral into two parts: \[ \int e^x \csc^2 x \, dx - \int e^x \cot x \, dx \] ### Step 3: Use integration by parts For the integral \( \int e^x \cot x \, dx \), we can use integration by parts. Let: - \( u = \cot x \) and \( dv = e^x \, dx \) Then, we differentiate and integrate: - \( du = -\csc^2 x \, dx \) - \( v = e^x \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int e^x \cot x \, dx = e^x \cot x - \int e^x (-\csc^2 x) \, dx \] This simplifies to: \[ e^x \cot x + \int e^x \csc^2 x \, dx \] ### Step 4: Substitute back into the integral Now, substituting back into our separated integrals: \[ \int e^x \csc^2 x \, dx - \left( e^x \cot x + \int e^x \csc^2 x \, dx \right) \] This leads to: \[ \int e^x \csc^2 x \, dx - e^x \cot x - \int e^x \csc^2 x \, dx = -e^x \cot x \] ### Step 5: Final answer Thus, the final result of the integral is: \[ -e^x \cot x + C \]

To solve the integral \( \int e^x (1 - \cot x + \cot^2 x) \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start with the expression inside the integral: \[ 1 - \cot x + \cot^2 x \] We can recognize that: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Solved Example|92 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

int(x cot^(2)x)dx

Evaluate the following inte^x(1-cot x+cot^2x)dx

Knowledge Check

  • inte^(x)(cotx-"cosec"^(2)x)dx=?

    A
    `-e^(x)"cosec"^(2)x+C`
    B
    `e^(x)"cotx+C`
    C
    `-e^(x)"cotx+C`
    D
    none of these
  • inte^x(cotx-1-cot^2 x)dx=

    A
    `e^xcotx+c`
    B
    `-e^xcotx+c`
    C
    `e^xcot^2x+c`
    D
    `-e^xcot^2x+c`
  • int cot^(2) x dx = ?

    A
    `-cot x -x + C`
    B
    `cot x-x + C`
    C
    `-cotx + x + C`
    D
    `cot x + x + C`
  • Similar Questions

    Explore conceptually related problems

    Evaluate the following integrals: inte^(x)(cotx-"cosec"^(2)x)dx

    int(dx)/(1+cot^(2)x)

    Evaluate: inte^x(cotx-cosec^2x)dx

    int(1+tan^(2)x)/(1+cot^(2)x)dx

    int (x)/(1-x cot x)dx=