Home
Class 12
MATHS
int(1)/(xsqrt(1-x^(3)))dx is equal to...

`int(1)/(xsqrt(1-x^(3)))`dx is equal to

A

`(1)/(3)log|(sqrt(1-x^(3)-1))/(sqrt(1-x^(3))+1)|+C`

B

`(1)/(2)log|(sqrt(1-x^(2))+1)/(sqrt1-x^(2))-1|+C`

C

`(1)/(3)log|(1)/(sqrt(1-x^(3)))|+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{x \sqrt{1 - x^3}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{x \sqrt{1 - x^3}} \, dx \] ### Step 2: Multiply and Divide by \(3x^2\) To facilitate the integration, we multiply and divide the integrand by \(3x^2\): \[ I = \int \frac{3x^2}{3x^3 \sqrt{1 - x^3}} \, dx \] ### Step 3: Substitute \(u = 1 - x^3\) Let \(u = 1 - x^3\). Then, we differentiate: \[ du = -3x^2 \, dx \quad \Rightarrow \quad dx = -\frac{du}{3x^2} \] ### Step 4: Substitute in the Integral Substituting \(u\) and \(dx\) into the integral gives: \[ I = \int \frac{3x^2}{3x^3 \sqrt{u}} \left(-\frac{du}{3x^2}\right) \] This simplifies to: \[ I = -\int \frac{1}{x^3 \sqrt{u}} \, du \] ### Step 5: Express \(x\) in terms of \(u\) From the substitution \(u = 1 - x^3\), we have: \[ x^3 = 1 - u \quad \Rightarrow \quad x = (1 - u)^{1/3} \] Thus, \(x^3 = 1 - u\) implies: \[ I = -\int \frac{1}{(1-u) \sqrt{u}} \, du \] ### Step 6: Simplify the Integral Now we can simplify the integral: \[ I = -\int \frac{1}{(1-u) \sqrt{u}} \, du \] ### Step 7: Use Partial Fraction Decomposition To integrate this, we can use partial fractions: \[ \frac{1}{(1-u) \sqrt{u}} = \frac{A}{1-u} + \frac{B}{\sqrt{u}} \] Finding constants \(A\) and \(B\) will allow us to integrate each term separately. ### Step 8: Integrate Each Term After finding \(A\) and \(B\), we can integrate: \[ \int \frac{A}{1-u} \, du + \int \frac{B}{\sqrt{u}} \, du \] ### Step 9: Back Substitute Finally, we back substitute \(u = 1 - x^3\) to express the integral in terms of \(x\). ### Final Answer The final result will be in the form: \[ I = -\frac{1}{3} \log(\sqrt{1 - x^3}) + C \] where \(C\) is the constant of integration. ---

To solve the integral \( \int \frac{1}{x \sqrt{1 - x^3}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{x \sqrt{1 - x^3}} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|62 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x.sqrt(1-x^(3)))dx=

The value of int(dx)/(xsqrt(1-x^(3))) is equal to

int(dx)/(xsqrt(1-x^(3)))dx=

The value of int _(-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2)))dx is equal to

int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

int(1)/(xsqrt(x-1))dx=

int _(3)^(8) (2-3x)/(xsqrt(1+x))dx is equal to

int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to